首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guillermo Díaz 《Polyhedron》1988,7(24):2743-2752
An improved synthetic method has been found for the preparation of the pentamethylcyclopentadienyl rhenium dicarbonyldihalide complexes. From the reaction of (η5-C5Me5)Re(CO)3 with Br2 or I2 in THF-H2O a mixture of cis and trans isomers of (η5-C5Me5)Re(CO)2X2 X = Br and I is formed. On the other hand, the reaction of [(η5-C5Me5)Re(CO)3C1][SbC16] in water gives the cis-(η5-C5Me5)Re(CO)2C12 complex. The solid IR spectra of the dicarbonyldihalide complexes are recorded and an assignment of the normal modes in terms of local symmetry is suggested by comparison with those observed in analogous molecules. A normal coordinate analysis performed using a modified general valence force field and considering simplified models, confirms most of the experimental assignments. The set of valence force constants reflects the structure of the isomers under study.  相似文献   

2.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

3.
Cp2MoH2 reacts with methyl acrylate in the presence of acetylenes (L = C2H2, C2Me2, HCCtBu, HCCSiMe3, C2(SiMe3)2, HCCCH2OMe, HCCCH2NMe2) to form acetylene complexes Cp2Mo(L) 5. Protonation takes place with CF3CO2H at −80°C to give short-lived cations [Cp2MoH(L)+ (8) (L = C2Me2, HCCSiMe3, C2(SiMe3)2). The structure of [Cp2MoH{η2-C2(SiMe3)2}]PF6(9) was determined by an X-ray diffraction study.  相似文献   

4.
(C5Me5)2Sm(THF)2 reacts with 1,2-epoxybutane in toluene to form, in addition to the toluene soluble [(C5 Me5)2Sm]2(μ-O), 1, the hexane soluble [(C5Me5)2Sm(THF)]2(μ-O), 2. In hexane, 2 loses THF to form 1 as a precipitate, but 1 cannot be converted to 2 by addition of THF at room temperature. Compound 1 does convert to 2 in low yield in THF at reflux. The reaction of (C5Me5)2SM(phthalan) with 1,2-epoxybutane generates 1 and a phthalan analog of 2, [(C5Me5)2Sm(phthalan)]2(μ,-O), 3. Compound 2 reacts with Me3CCN to form [(C5Me5)2Sm(NCCMe3)]2(μ-O), 4, by displacement of THF.  相似文献   

5.
The structures of the versatile starting compounds for organoiron complexes, the cationic aqua complex [(η5-C5Me4Et)Fe(CO)2(OH2)]BF4 (1b) and the halide complexes (η5-C5Me5)Fe(CO)2-I (2a), (η5-C5Me4Et)Fe(CO)2-I (2b) and (η5-C5Me4Et)Fe(CO)2-Cl (3b), are characterized by X-ray crystallography. Complex 1b [Fe---O: 2.022(8) Å and 2.043(9) Å, two independent molecules] is the first structurally characterized example of organoiron aqua complexes. Details of the synthetic procedures for the above complexes and the labile cationic THF complexes [η5-C5R5)Fe(CO)2(THF)]BF4 (4) are disclosed, and the dissociation equilibrium of 4 is confirmed by means of variable temperature 1H-NMR as well as saturation transfer experiment.  相似文献   

6.
The title compounds react with unidentate ligands, L, containing either phosphorus or arsenic donor atoms to yield the corresponding compounds of the type Ru(η5---C5Me4Et)(CO)LX; with didentate phosphorus donor ligands the major species formed is the bridged complex {Ru(η5---C5Me4Et)(CO)X}2{Ph2P(CH2)nPPh 2} n = 1, X = Br; n = 2, X = Cl). In contrast, unidentate ligands containing nitrogen donor atoms such as pyridine did not react with Ru(η5---C5Me4Et)(CO)2Cl although reaction with 1,10-phenanthroline or diethylenetriamine yielded the ionic products [Ru(η5---C5Me4Et)(CO)L]+Cl (L = phen or (NH2CH2CH2)2NH). Reaction of Ru(η5---C5Me4Et)(CO)2Br with AgOAc yielded the corresponding acetato complex Ru(η5---C5Me4Et)(CO)20Ac. Ru(η5--- C5Me4Et)(CO)2X reacts with AgY (Y = BF4 or PF6) in either acetone or dichloromethane to give the useful solvent intermediates [Ru(η5---C5Me4Et)(CO)2(solvent)]+Y, which readily react with ligands L to yield ionic derivatives of the type [Ru(η5---C5Me4Et)(CO)2L]+Y (where L = CO, NCMe, py, C2H4 or MeO2CCCCO2Me).  相似文献   

7.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

8.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

9.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

10.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

11.
A transition metal-substituted silylacetylene [(η5-C5H5)Fe(CO)2SiMe2C]2, [FpMe2SiC]2 (I) was synthesized and characterized spectroscopically and structurally. I crystallized in the monoclinic space group P21/n, A = 13.011(3) Å B = 12.912(3) Å, C = 13.175(5) Å, β = 94.95(2). The acetylene linkage is reactive toward Co2(CO)8 to form I. Co2(CO)6 (II) which was also characterized spectroscopically and by single crystal X-ray diffraction. II crystallized in the orthorhombic space group Pbca, A = 17.64(2) Å, B = 14.225(10) Å, C = 24.49(2) Å.  相似文献   

12.
139La-NMR chemical shifts were measured for several anionic complexes of formulae Li(C4H8O2)3/2 [La(ν3-C3H5)4], [Li(C4H8O2)2][Cp′nLa(ν3-C3]H5)4−n] (Cp′ = Cp(ν5-C5H5); n = 1, 2 and Cp′ = Cp * (ν5-C5Me5); N = 1) and Li[RnLa(ν3-C3H4)4n] (R = N(SiMe3)2; n = 1, 2 and R = CCsIMe3; n = 4), as well as for neutral compounds for formulae La(ν3-C3H5)3Ln (L = (C4H8O2)1.5, (HMPT)2, TMED), Cp′nLa(ν3-C3H5)3−n (Cp′= Cp(ν5-Cp5H5), Cp *(ν5-C5Me5); n = 1, 2) and La(ν3-C3H2)2X(THF)2 X = Cl, Br, I). Typical ranges of the 139La-NMR chemical shifts were found for the different types of complex independent of number and kind of organyl groups directly bonded to lanthanum.

Zusammenfassung

139La-NMR-Spektroskopie wurde an einer Reihe anionischer Allyllanthanat(III)-Komplexe der Zusammensetzung ]- [La)ν3-C3H5)4, [Li(C4H8)2][Cp′nLa(ν3-C3H5)4−n(Cp′ = Cp(ν5-C5H5); n = 1, 2 und Cp′ = Cp * (ν5-C5Me5); N = 1) und Li[RnLa(ν3-C3H5)4−n (R = B(SiMe3)2; n = 1, 2 und R = CCSiMe3; n = 4 sowie neutraler Allyllanthan(III)-Komplexe der Zusammensetzung La(ν3-C3H5)3Ln (Ln = (C4H8O2)1.5, (HMPT)2, TMED), Cp′n, La(ν3-C3H5)3−n (Cp′ = Cp(ν5-C5H5), Cp * (ν5- Cp5Me5); n = 1, 2) und La(ν3-Cp3H5)2X(THF)2 (X = Cl, Br, I) durchgefürt. In Abhängikeit von der Anzahl und der Art der am Lanthan gebundenen Gruppen wurden für die verschieden Komplextypen charakteristische Resonanzbereiche ermittelt.  相似文献   


13.
The effects of cyclopentadienyl ring size on the geometry of bimetallic organosamarium complexes have been studied by comparing the X-ray crystal structure of [(C5H4Me)2(THF)Sm(μ-Cl)]2, prepared from KC5H4Me and SmCl3 in THF, with C5Me5 analogs. The complex crystallizes from THF at −30°C in space group Pbcn with a = 20.312(5), b = 9.626(2), c = 16.225(3) Å, V = 3172.5(12) Å3 and Dcalc = 1.74 g cm−3 for Z = 4. Least-squares refinement of the model based on 1759 reflections [|Fo| > 2.0σ(|Fo|)] converged to a final RF = 5.0%. The complex adopts a geometry which has a molecular two-fold rotation axis perpendicular to the Sm2Cl2 plane and a crystallographic inversion center. Hence, both methyl groups of each (C5H4Me)2Sm unit are located on the side opposite of the THF ligands, which are trans to each other, and the four C5H4Me ring centroids define a square plane. The Sm---Cl distances are 2.759(3) and 2.819(3) Å.  相似文献   

14.
Reaction of C5H4(SiMe3)2 with Mo(CO)6 yielded [(η5-C5H3(SiMe3)2)Mo(CO)3]2, which on addition of iodine gave [(η5-C5H3(SiMe3)2Mo(CO)3I]. Carbonyl displacement by a range of ligands: [L = P(OMe)3, P(OPri)3,P(O-o-tol)3, PMe3, PMe2Ph, PMePh2, PPh3, P(m-tol)3] gave the new complexes [(η5-C5H3(SiMe3)2 MO(CO)2(L)I]. For all the trans isomer was the dominant, if not exclusive, isomer formed in the reaction. An NOE spectral analysis of [(η5-C5H3(SiMe3)2)Mo(CO)2(L)I] L = PMe2Ph, P(OMe)3] revealed that the L group resided on the sterically uncongested side of the cyclopentadienyl ligand and that the ligand did not access the congested side of the molecule. Quantification of this phenomenon [L = P(OMe)3] was achieved by means of the vertex angle of overlap methodology. This methodology revealed a steric preference with the trans isomer (less congestion of CO than I with an SiMe3 group) being the more stable isomer for L = P(OMe)3.  相似文献   

15.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

16.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

17.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

18.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

19.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

20.
Reactions of the lithium salts of 3-substituted indenes 1, 2 with ZrCl4(THF)2 gave two series of nonbridged bis(1-substituted)indenyl zirconocene dichloride complexes. Fractional recrystallization from THF–petroleum ether furnished the pure racemic and mesomeric isomers of [(η5-C9H6-1-C(R1)(R2)---o-C6H4---OCH3)2ZrCl2nTHF (R1=R2=CH3, n=1, rac-1a and meso-1b; R1=CH3, R2=C2H5; n=0.5 or 0, rac-2a and meso-2b), respectively. Complex 1a was further characterized by X-ray diffraction to have a C2 symmetrically racemic structure, where the six-member rings of the indenyl parts are oriented laterally and two o-CH3O---C6H4---C(CH3)2--- substituents are oriented to the open side of the metallocene (Ind: bis-lateral, anti; Substituent: bis-central, syn). The four zirconocene complexes are highly symmetrical in solution as characterized by room temperature 1H-NMR, however 1H–1H NOESY of meso-1b shows that some of the NOE interactions arise from the two separated indenyl parts of the same molecule, which can only be well explained by taking into account the torsion isomers in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号