共查询到16条相似文献,搜索用时 58 毫秒
1.
为研究不同水合物藏饱和度对注热开采动态的影响,采用自制的一维天然气水合物(NGH)开采模拟实验装置,模拟地层多孔介质的条件,首先在填砂模型中生成不同饱和度的NGH,然后进行注热盐水分解实验。结果表明:不同饱和度的NGH注热分解产气都可划分为三个阶段,不同的是NGH饱和度越高,水合物分解阶段的产气速率越大,且该阶段持续的时间越长;NGH饱和度越高,注热分解阶段电阻率增大的幅度越大,系统各测点温度升高的幅度越小。注热分解过程中产水速率围绕注水速率而上下波动,且NGH饱和度越高,产水速率波动幅度越大;在实验研究范围内,随初始水合物饱和度的升高,注热开采的能量效率逐渐升高。因此,从能量效率来说,高饱和度的水合物藏更适宜于注热开采。 相似文献
2.
3.
深海天然气水合物降压开采过程中,沉积物的压缩会改变储层的物理力学特性,进而对天然气的开采效果产生显著影响.为揭示沉积物压缩效应下井周围储层物理力学特性演化规律,本文建立了考虑沉积物压缩效应的理论模型,通过COMSOL模拟研究了不同初始固有渗透率、初始水合物饱和度和井底压力条件下的降压开采中生产井周围储层的物理力学特性演化规律以及开采效果.结果表明:受沉积物压缩的影响,水合物分解区的渗透率随着与井筒距离的增加先增加后减少;产气与产水速率由零立即上升至峰值,然后迅速下降,并且考虑沉积物压缩时的产气与产水速率比不考虑时低;在水合物完全分解区,渗透率的大小与有效应力成负相关关系,未分解区渗透率的大小与水合物饱和度成负相关关系;井底压力越小,有效应力越大,生产井周围储层的渗透率下降越明显;初始水合物饱和度对产气与产水的影响存在拐点,饱和度拐点位于0.25与0.35之间,高水合物饱和度并不代表储层开采效果好,产气速率的高低还与储层的渗透率有关,高水合物饱和度储层的渗透率较低,产气速率较低;储层初始固有渗透率较高时显著促进了开采效果,但储层变形量较大增加了储层的不稳定性. 相似文献
4.
降压开采天然气水合物使其分解会导致储层孔隙度、渗透率、孔隙压力和岩层骨架有效应力发生改变, 同时降低沉积物的胶结程度, 使地层的抗剪强度和承载能力降低, 从而引起井壁失稳、海底滑坡、海底面沉降等工程问题. 为此, 在地下多相非等温数值模拟软件TOUGH+Hydrate框架内, 基于扩展的三维Biot固结理论, 考虑水合物分解相变、传热(T)、流动(H)、岩土体变形(M)等过程及其相互耦合作用, 建立了新的水合物开采传热-流动-力学(THM)耦合数学模型, 并开发有限元程序对其进行数值求解. 以中国南海神狐海域GMGS1航次SH2站位水合物储层条件为研究对象, 构建了垂直井降压开采THM耦合地层井壁稳定性分析模型, 预测了水合物开采过程中储层温-压-力场和水合物分解区的演化规律, 揭示了地层优势出砂区域和海底面沉降趋势. 结果表明: 储层降压导致地层有效应力增大, 进而引起井周地层发生沉降, 且地层的沉降主要发生在降压开采前期, 最大沉降位置位于井壁周围, 向储层内部延伸地层沉降量快速减小; 水合物分解导致井周地层力学强度降低, 加剧了储层的沉降; 井筒降压造成射孔段井壁应力集中最为明显, 从而造成井壁破坏的潜在风险, 这些区域正是水合物开采出砂防治的关键区域. 相似文献
5.
降压开采天然气水合物使其分解会导致储层孔隙度、渗透率、孔隙压力和岩层骨架有效应力发生改变,同时降低沉积物的胶结程度,使地层的抗剪强度和承载能力降低,从而引起井壁失稳、海底滑坡、海底面沉降等工程问题.为此,在地下多相非等温数值模拟软件TOUGH+Hydrate框架内,基于扩展的三维Biot固结理论,考虑水合物分解相变、传热(T)、流动(H)、岩土体变形(M)等过程及其相互耦合作用,建立了新的水合物开采传热-流动-力学(THM)耦合数学模型,并开发有限元程序对其进行数值求解.以中国南海神狐海域GMGS1航次SH2站位水合物储层条件为研究对象,构建了垂直井降压开采THM耦合地层井壁稳定性分析模型,预测了水合物开采过程中储层温-压-力场和水合物分解区的演化规律,揭示了地层优势出砂区域和海底面沉降趋势.结果表明:储层降压导致地层有效应力增大,进而引起井周地层发生沉降,且地层的沉降主要发生在降压开采前期,最大沉降位置位于井壁周围,向储层内部延伸地层沉降量快速减小;水合物分解导致井周地层力学强度降低,加剧了储层的沉降;井筒降压造成射孔段井壁应力集中最为明显,从而造成井壁破坏的潜在风险,这些区域正是水... 相似文献
6.
天然气水合物由于储量大、污染低等优点, 已成为我国非常重要的战略能源, 世界各国也加快了天然气水合物的勘探和开发工作. 经济高效的开采方法以及相关的灾害控制和环境保护是对天然气水合物进行商业化开采必须要解决好的两个关键问题. 目前, 注热法和降压法的联合使用被认为是最为有效的天然气水合物开采方法. 在降压法和注热法中, 天然气水合物开采涉及传热、相变、渗流和变形等物理过程和效应, 而传热最慢且相变会消耗大量的热量, 无法直接采用常规的单纯依靠渗流原理的油气开采方案来开采天然气水合物. 我国南海的天然气水合物主要赋存于粉砂质黏土和粉细砂等类型的沉积物中, 胶结性差且埋深较浅. 常规的开采方法还不适合我国南海的水合物开采, 需要考虑新型的开采方式, 这其中提高沉积层中的热传导效率是天然气水合物开采的关键. 郑哲敏提出了机械?热联合开采的新概念方法, 利用无穷无尽表层海水的热量, 基于对流传热的原理和管道输送技术, 并兼顾类似采煤挖掘可能导致的深海浅软地层安全问题. 天然气水合物机械?热联合开采法是一种新的概念模式, 具有开采可控、高效且能有效降低地层安全性风险的优点. 本文针对该新方法的能量、装备、经济可行性进行综合评估, 阐述了针对核心问题管道含相变气液固多相流动、地层安全方面的研究进展, 展望了未来推广应用的空间. 相似文献
7.
初始压力对多孔介质中气体水合物生成的影响 总被引:4,自引:0,他引:4
利用自制的一维天然气水合物生成与开采模拟实验系统,实验研究多孔介质中天然气水合物生成时不同初始压力对生成量、生成时间的影响.分别用相同气水比注入、相同注气量不同注水量、相同注水量不同注气量三种方式来控制初始压力.结果表明:在砂粒粒径300μm~500μm,盐水质量浓度2%,系统温度为2℃、初始压力为5MPa~9MPa的条件下进行水合物的等容生成实验时,初始压力越大,生成的水合物量越多,水合物开始生成的时间越早;但初始压力越大,实验系统中水合物生成最终稳定所需的时间越长.本实验系统采用的三种不同的控制初始压力的方式都可以得到上述结果.由此,可以为今后室内进行天然气水合物的生成实验提供科学指导. 相似文献
8.
9.
根据绞刀头结构和工作原理以及天然气水合物沉积物的物理特性,建立切削天然气水合物沉积物的有限元模型,运用ANSYS/LS-DYNA仿真软件和Drucker-Prager材料模型模拟绞刀切削海底天然气水合物沉积物的过程,分析绞刀切削过程沿水平、竖直和转轴方向的受力特点,仿真分析绞刀横移速率、转速、下放角和切削区间角对切削力的影响规律。结果表明,增大横移速率会导致绞刀三个方向受力明显增大;转速提高会降低绞刀三个方向的切削力,随着转速增加,绞刀切削力的减小趋于平缓;绞刀下放角的增大会使绞刀轴向受力急剧增加,影响采矿车工作平稳性;随着切削区间角的增大,绞刀X轴方向力先增大后减小,工作时采用较大的切削区间角,可提高切削效率和采矿车工作稳定性。 相似文献
10.
水合物分解阵面演化过程与开采安全性和产气效率密切相关,是开采原位监测的重要组成部分。在玻璃砂样品中进行了甲烷水合物降压开采模拟试验,探讨了水合物饱和度对渗流阵面和水合物分解阵面演化过程的影响,结合已有理论模型,分析了水合物分解阵面传播速度的关键影响因素。结果表明:渗流阵面和水合物分解阵面的传播距离均与时间平方根呈近似线性关系,传播速度均随水合物饱和度的增加而减小;水合物分解阵面的传播速度随多孔介质的有效渗透率和降压幅度的增加而变快,随孔隙率的增加而变慢,粗砂质地层更有利于水合物降压分解阵面的传播。 相似文献
11.
天然气水合物广泛赋存在深海沉积物孔隙中, 被认为是具有巨大开发潜力的未来绿色能源之一, 引起全球的关注. 深海水合物开采将造成含水合物储层的强度劣化, 可能产生孔压积聚, 诱发海床失稳. 本文基于边坡稳定极限平衡分析框架, 引入考虑水合物开采热-流-化学耦合过程的数值分析模型, 研究水合物开采对海底边坡稳定性的影响. 采用TOUGH+HYDRATE热-流-化学耦合分析程序, 模拟了采用水平井降压法和热激法开采深海水合物的过程, 分析了水合物分解锋面扩展和瞬态孔压演变的规律, 并通过SLOPE/W程序采用极限平衡分析方法计算水合物开采过程及停采后的海底边坡安全系数, 分析开采井位置和开采方法对海底边坡稳定性的影响. 研究表明, 对于存在致密盖层的细砂储层陡坡, 单水平井降压开采过程中, 由于孔压降低, 土体有效应力增加, 边坡稳定性显著提高, 当开采井布设在坡体中部时, 边坡稳定性提高最为明显; 停采后, 由于水合物分解导致土体黏聚强度降低, 且孔压逐渐回升到静水压状态, 导致边坡稳定性下降, 最危险滑弧通过水合物分解区. 若采用双水平井热激法开采, 开采过程与停采后的最危险滑弧始终通过水合物分解区, 由于开采过程中温度升高, 井周孔压显著上升, 导致边坡安全系数明显下降, 存在诱发滑坡的风险. 相似文献
12.
天然气水合物广泛赋存在深海沉积物孔隙中, 被认为是具有巨大开发潜力的未来绿色能源之一, 引起全球的关注. 深海水合物开采将造成含水合物储层的强度劣化, 可能产生孔压积聚, 诱发海床失稳. 本文基于边坡稳定极限平衡分析框架, 引入考虑水合物开采热-流-化学耦合过程的数值分析模型, 研究水合物开采对海底边坡稳定性的影响. 采用TOUGH+HYDRATE热-流-化学耦合分析程序, 模拟了采用水平井降压法和热激法开采深海水合物的过程, 分析了水合物分解锋面扩展和瞬态孔压演变的规律, 并通过SLOPE/W程序采用极限平衡分析方法计算水合物开采过程及停采后的海底边坡安全系数, 分析开采井位置和开采方法对海底边坡稳定性的影响. 研究表明, 对于存在致密盖层的细砂储层陡坡, 单水平井降压开采过程中, 由于孔压降低, 土体有效应力增加, 边坡稳定性显著提高, 当开采井布设在坡体中部时, 边坡稳定性提高最为明显; 停采后, 由于水合物分解导致土体黏聚强度降低, 且孔压逐渐回升到静水压状态, 导致边坡稳定性下降, 最危险滑弧通过水合物分解区. 若采用双水平井热激法开采, 开采过程与停采后的最危险滑弧始终通过水合物分解区, 由于开采过程中温度升高, 井周孔压显著上升, 导致边坡安全系数明显下降, 存在诱发滑坡的风险. 相似文献
13.
利用自制的一维天然气水合物(NGH)开采模拟实验系统,通过对NGH生成过程中电阻率、温度、压力等的变化规律进行分析,验证了在海洋沉积物体系中用电阻率法测试NGH的可行性。实验结果表明,电阻率可以清楚地反映NGH的成核及生长过程。NGH开始成核时消耗了溶液中的水分和甲烷气体,增加了离子之间的连通性,使电阻率降低;晶核开始生长为NGH后,由于生成的NGH类似于绝缘体,并且使得孔隙连通性变差,电阻率逐步升高,NGH大量生成后电阻率保持稳定。然后进行NGH降压分解实验,随着NGH的分解,NGH饱和度下降,电阻率也逐渐下降。 相似文献
14.
1-D Modeling of Hydrate Depressurization in Porous Media 总被引:8,自引:0,他引:8
A thermal, three-phase, one-dimensional numerical model is developed to simulate two regimes of gas production from sediments containing methane hydrates by depressurization: the dissociation-controlled regime and the flow-controlled regime. A parameter namely dissociation-flow time-scale ratio, R, is defined and employed to identify the two regimes. The numerical model uses a finite-difference scheme; it is implicit in water and gas saturations, pressure and temperature, and explicit in hydrate saturation. The model shows that laboratory-scale experiments are often dissociation-controlled, but the field-scale processes are typically flow-controlled. Gas production from a linear reservoir is more sensitive to the heat transfer coefficient with the surrounding than the longitudinal heat conduction coefficient, in 1-D simulations. Gas production is not very sensitive to the well temperature boundary condition. This model can be used to fit laboratory-scale experimental data, but the dissociation rate constant, the multiphase flow parameters and the heat transfer parameters are uncertain and should be measured experimentally. 相似文献
15.
天然气水合物因其巨大的资源量与高能量密度而被视为一种前景广阔的能源. 理解孔隙尺度下天然气水合物生成与分解动力学及气-水-水合物三相分布对优化天然气水合物开采工艺至关重要. 文章设计了一种新型的高压微流控可视化实验装置(最高耐压19.0 MPa), 可实现孔隙尺度下气体水合物生成和分解相变的直接观测. 首先, 观测并分析了南海神狐海域温压条件下(压力15.5 MPa)甲烷水合物的成核与生长过程. 通过图像识别算法分析了热激法下3种升温速率(0.5, 2.0和8.0 K/h)对甲烷水合物分解动力学与气泡演化规律. 实验结果表明, 孔隙中存在两种不同的甲烷水合物生成机制: (1) 甲烷气泡主导生成的气-水-水合物三相共存的疏松多孔型水合物; (2) 水中溶解相甲烷主导生成的致密单晶型水合物. 其中, 单晶型水合物包裹在多孔型水合物周围并呈树突状生长, 在接触甲烷气泡时会诱导多孔型水合物的快速成核与生长. 水合物分解过程中, 气-水-水合物三相共存的多孔型水合物优先分解, 单晶型水合物相对稳定, 其分解温度高于多孔型水合物约0.3 K. 孔隙内水合物分解后产生明显的气泡聚集与融合现象, 气泡平均直径为60 ~ 100 μm. 提高升温速率显著加快了水合物分解速率, 更有利于气泡融合, 造成较大气泡在孔隙内分布. 本研究为甲烷水合物在孔隙尺度下生成、分解与微米级气泡演化提供直接实时观测证据, 研究结果对深入理解水合物分解动力学与水合物沉积物两相渗流理论提供基础支撑.
相似文献16.
天然气水合物作为一种非常规的清洁能源, 在全球分布广、资源量大. 自20世纪90年代以来, 加拿大、美国、日本、中国已经先后进行了陆域及海域的水合物试采, 但发现出砂、单井日产气量低、稳产时间短等问题, 试采产量远不能满足商业化开发的需求, 其中核心问题是对水合物开发过程中的相变、多相多组分多场耦合渗流特征的认识不够明晰. 本文根据天然气水合物开发过程中涉及的渗流场、温度场、化学场、力学场等多场耦合特征, 重点综述水合物生成/分解对各物理场主要特征参数的影响, 包括水合物储层的孔隙度、水合物饱和度、渗透率、相对渗透率等基础物性参数及其动态演变, 天然气水合物的导热系数、比热容、热扩散系数以及水合物生成/分解热等热力学参数, 天然气水合物生成、分解动力学特征, 纯水合物以及含水合物沉积物的力学性质等, 最后阐述了天然气水合物开发渗流中的多场耦合关系及相互作用, 提出了今后水合物开发多物理场特征及耦合渗流的科学研究、技术开发的有关建议. 相似文献