首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

2.
Electrical transport properties of Ag metal-fluorescein sodium salt (FSS) organic layer-silicon junction have been investigated. The current-voltage (I-V) characteristics of the diode show rectifying behavior consistent with a potential barrier formed at the interface. The diode indicates a non-ideal I-V behavior with an ideality factor higher than unity. The ideality factor of the Ag/FSS/p-Si diode decreases with increasing temperature and the barrier height increases with increasing temperature. The barrier height (φb=0.98 eV) obtained from the capacitance-voltage (C-V) curve is higher than barrier height (φb=0.72 eV) derived from the I-V measurements. The barrier height of the Ag/FSS/p-Si Schottky diode at the room temperature is significantly larger than that of the Ag/p-Si Schottky diode. It is evaluated that the FSS organic layer controls electrical charge transport properties of Ag/p-Si diode by excluding effects of the SiO2 residual oxides on the hybrid diode.  相似文献   

3.
Iron is incorporated in porous silicon (PS) by impregnation method using Fe(NO3)3 aqueous solution. The presence of iron in PS matrix is shown from energy-dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) measurements. The optical properties of PS and PS-doped iron are studied by photoluminescence (PL). The iron deposited in PS quenched the silicon dangling bonds then increased the PL intensity. The PL peak intensity of impregnated PS is seven times stronger than that in normal PS. Upon exposing iron-PS sample to ambient air, there is no significant change in peak position but the PL intensity increases during the first 3 weeks and then stabilises. The stability is attributed to passivation of the Si nanocrystallites by iron.  相似文献   

4.
This paper reports a study of the application of chemical vapor-etching (CVE) for the rear surface and in the emitter of polycrystalline silicon (pc-Si) solar cells. The CVE technique consists of exposing pc-Si wafers to a mixture of HF/HNO3. This technique is used to groove the rear surface of the pc-Si wafers for acid vapors rich in HNO3 (HNO3/HF > 1/4), in order to realize rear-buried metallic contacts (RBMC) and the formation of a porous silicon (PS) layer on the frontal surface of the cell for volume ratio of HNO3/HF = 1/7. A significant increase of the spectral response in the long wavelength range was observed when a RBMC is formed. This increase was attributed to the reduction of the effective thickness of the base of the cells and grain boundary Al gettering. The achievement of a PS layer on the emitter of the pc-Si cells passivates the surface and reduces the reflectivity. The dark I-V characteristics of pc-Si cells with emitter-based PS show an important reduction of the reverse current together with an improvement of the rectifying behaviour. The I-V characteristic under AM1.5 illumination shows an enhancement of both short circuit current density and fill factor. The internal quantum efficiency is improved, particularly in the short wavelengths region.  相似文献   

5.
A novel method is demonstrated to detect Antifreeze proteins (AFPs) based on photoluminescence (PL) using porous silicon (PS) coated with silver as a substrate. Ag/PS substrate is obtained through immersion of PS in silver nitrate (AgNO3) solutions and is incubated with Rhodamine B (RB) as PL label. This substrate is easy to be fabricated and the pore size of PS is large enough for biological molecules to infiltrate, which is an ideal platform for biological molecule detection. Through functionalization used glutaraldehyde (GTA) and 4-(N-Maleimidomethyl) cyclohexane-1-carboxylicacid (Sulfo-SMCC) as cross-linkers separately, we test the role of the AFPs antibodies in selective capturing the AFPs antigen and explain the reason of the enhancement of PL intensity. The result shows a significant enhancement of the PL intensity of RB at around 590 nm due to the interaction of antibody–antigen competitive binding with AFPs. Therefore, the PL corresponding to RB was selected to detect the target AFPs and the PL intensity of RB proportional to the AFPs concentration. The detection limit was found to be 1.65 μg/ml for AFPs when GTA was used as cross-linker, and the detection limit was 16.5 ng/ml with Sulfo-SMCC as cross-linker.  相似文献   

6.
The influence of surface treatment of porous silicon (PS) in lanthanum (La) containing solution during different times on its photoluminescence and electrical properties has been investigated. For this purpose, chemical composition, structural, vibrational, photoluminescence and electrical characteristics of the porous silicon layer with and without lanthanum were examined using X-ray diffractometry (XRD), energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy and current–voltage (IV) measurements. The results indicate that porous silicon layers treated with lanthanum exhibit an enhancement of photoluminescence intensity and show an improvement current intensity compared to untreated porous silicon layer.  相似文献   

7.
This study reports a comparative analysis on time dependent degradation of photoluminescence (PL) spectra of porous silicon (PS) during dark-aging (DA) and photo-aging (PA). Fourier Transform Infrared (FTIR) spectroscopy studies have been performed to get an insight on possible chemical changes in the PS surface. It has been found that SiHx bonds decrease progressively while SiOx bonds increase. FTIR and PL measurements revealed presence of blue shifts in the PL spectra during the aging stages (PA and DA). While the PL intensity of dark aged PS shows a decrease during the first 3 weeks and an increase afterwards, the PL intensity decreases continuously for photo-aged PS. The change in the PL spectra has been investigated by overlapping of two different PL bands which are reflective of oxidation of PS surface and size of Si naonocrystallites. A possible bond configuration model about the oxidation of PS surface has also been proposed. The results are interpreted in terms of quantum size effects in PS and the influence of the surface composition.  相似文献   

8.
Electronic and interface state distribution properties of Ag/p-Si Schottky diode have been investigated. The diode indicates non-ideal current-voltage behavior with an ideality factor greater than unity. The capacitance-voltage (C-V) characteristic is linear in reverse bias indicating rectification behavior and charge density within depletion layer is uniform. From I-V and C-V characteristics, junction parameters such as diode ideality factor and barrier height were found as 1.66 and ?B(I-V) = 0.84 eV (?B(C-V) = 0.90 eV), respectively. The interface state density Nss and relaxation time τ of the Schottky diode were determined by means of Schottky capacitance spectroscopy method. The results show the presence of thin interfacial layer between the metal and semiconductor.  相似文献   

9.
The effect of preliminary oxidation annealing of porous silicon (PS) on photoluminescence (PL) under laser pumping at wavelengths of 532 and 980 nm, EPR, and transverse current transport in structures based on PS with a fused tungsten-tellurium glass (TTG) doped with Er and Yb has been studied. It has been shown that such annealing and the presence of silicon nanocrystals (nc-Si) in PS promote multiple PL enhancement for both Er ions in TTG and nc-Si in PS at wavelengths of 750 and 1540 nm, respectively. As TTG is fused into PS, P b -centers of nonradiative recombination are suppressed, while retaining discrete electron tunneling through nc-Si grains in PS.  相似文献   

10.
In the current communication, porous silicon samples were prepared by pulsed photoelectrochemical etching using a hydrofluoric acid-based solution. The structural and gas-sensing properties of the samples were studied. Apart from the cycle time T and pause time Toff of the pulsed current, a novel parameter, in the shape of the current named ‘delay time Td’ was introduced. Our results showed that by optimization of delay time, the porosity of samples can be controlled due to the chemical preparation of silicon surface prior to electrochemical anodization. The fourier-transform infrared measurements of porous silicon (PS) layers on Si substrate showed that the typical PS surface was characterized by chemical species like Si–H and Si–O–Si terminations. The two-minute delay before applying electrical current was considered sufficient for the fabrication of higher porosity (83%), more uniform, and more stable structures. The photoluminescence (PL) peak of the optimized sample showed higher intensity than the other samples. An obvious PL blue shift also revealed a change in the crystallographic characteristics of silicon due to quantum confinement effects. Metal–semiconductor–metal diodes with Schottky contacts of nickel were fabricated on PS samples and the potential application of optimized substrates for the improved sensitivity, stability, response time and recovery time of hydrogen gas sensors was subsequently studied.  相似文献   

11.
Terbium (Tb3+)/porous silicon (PS) nanocomposites have been formed by impregnation of PS layer in chloride solution of terbium. Complete and uniform penetration of Tb3+ into PS layer is confirmed by Rutherford backscattering spectrometry (RBS) study. Photoluminescence (PL) spectrum shows that Tb3+ ions emit highly in the green region, while the PL band of PS is quenched. The emission of Tb3+ ions depends strongly on the excitation energy and shows a high efficiency at 488 nm corresponding to the maximum absorption band in terbium. A systematic study of the PL versus annealing temperature was performed. It shows an important improvement of the PL intensity for 700°C temperature annealing.  相似文献   

12.
The effect of etching time of porous silicon on solar cell performance   总被引:1,自引:0,他引:1  
Porous silicon (PS) layers based on crystalline silicon (c-Si) n-type wafers with (1 0 0) orientation were prepared using electrochemical etching process at different etching times. The optimal etching time for fabricating the PS layers is 20 min. Nanopores were produced on the PS layer with an average diameter of 5.7 nm. These increased the porosity to 91%. The reduction in the average crystallite size was confirmed by an increase in the broadening of the FWHM as estimated from XRD measurements. The photoluminescence (PL) peaks intensities increased with increasing porosity and showed a greater blue shift in luminescence. Stronger Raman spectral intensity was observed, which shifted and broadened to a lower wave numbers of 514.5 cm−1 as a function of etching time. The lowest effective reflectance of the PS layers was obtained at 20 min etching time. The PS exhibited excellent light-trapping at wavelengths ranging from 400 to 1000 nm. The fabrication of the solar cells based on the PS anti-reflection coating (ARC) layers achieved its highest efficiency at 15.50% at 20 min etching time. The I-V characteristics were studied under 100 mW/cm2 illumination conditions.  相似文献   

13.
We present results for alkali metallization effects on photoluminescence (PL) properties of porous silicon (PS). The metallization of PS was realized by immersion plating in solutions containing 3 mM LiNO3, KNO3 and NaNO3 metal salts. The surface bond configuration of PS was monitored by Fourier transmission infrared spectroscopy (FTIR) and it was found that the PS surface was oxidized after metallization. Surface properties of PS were investigated by field emission scanning electron microscopy (FE-SEM) and it was found that the PS surface was covered by alkali metals for short immersion times. The PL intensity increased for critical immersion times and PL spectrum shifted to high energy region with the metallization. The experimental results suggest a possibility that the metallization provides a relatively easy way to achieve an increase in the PL intensity and oxidation of the PS surface.  相似文献   

14.
We present new results concerning the photoluminescence properties of europium (Eu3+) incorporated in porous silicon (PS) matrix. Eu3+ ions were embedded in the matrix by simple impregnation of PS layers in chloride solution of europium. Complete and uniform penetration of Eu3+ into the pores is proved from RBS study.The PL spectrum shows the existence of several peaks superposed to the PL band of PS. These peaks are related to level transitions in Eu3+. The effect of the ray excitation on the PL shows that energy transfer is not the principal route for radiative recombination.A systematic study of the PL versus annealing temperature was performed. It was found that the optimised PL spectrum is found after annealing at 1000°C. Low-temperature study of the PL shows an important increase of the intensity and a broadness of the peaks due to the appearance of a second crystallographic site.  相似文献   

15.
Our goal is to experimentally investigate whether or not the effective Schottky barrier heights (SBHs) and ideality factors obtained from the current-voltage (I-V) and capacitance-voltage (C-V) characteristics differ from diode to diode even if the samples were identically prepared. For this purpose, we prepared Cd/n-Si (33 dots) and Cd/p-Si (15 dots) diodes. The SBH for the Cd/n-Si diodes ranged from 0.701 to 0.605 eV, and ideality factor n from 1.913 to 1.213. Φb value for the Cd/p-Si diodes ranged from 0.688 to 0.730 eV, and ideality factor n value from 1.473 to 1.040. The experimental SBH distributions obtained from the C−2-V and I-V characteristics were fitted by a Gaussian function and their mean SBH values were calculated. Furthermore, the laterally homogeneous barrier heights were also computed from the extrapolation of the linear plot of experimental barrier heights versus ideality factors.  相似文献   

16.
The effect of combined doping by shallow donor and acceptor impurities on boosting the quantum yield of porous-silicon photoluminescence (PL) in the visible and near IR range was studied using phosphorus and boron ion implantation. Nonuniform doping of samples and subsequent oxidizing annealing were performed before and after porous silicon was formed on silicon single crystals strongly doped by arsenic or boron up to ≈1019 cm?3. The concentration of known Pb centers of nonradiative recombination was controlled by electron paramagnetic resonance. It is shown that there is an optimal joined content of shallow donors and acceptors that provides a maximum PL intensity in the vicinity of the red part of the visible spectrum. According to estimates, the PL quantum yield in the transitional n ++-p + or p ++-n + layer of porous silicon increases by two orders of magnitude as compared to that in porous silicon formed on silicon not subjected to ion irradiation.  相似文献   

17.
Novel oriented aligned TiO2 nanotube (TN) arrays were fabricated by anodizing titanium foil in 0.5% HF electrolyte solution. It is indicated that the sizes of the TNs greatly depended on the applied voltages to some extent. The electrical properties of the TN arrays were characterized by current-voltage (I-V) measurements. It exhibits a nonlinear, asymmetric I-V characterization, which can be explained that there exists an n-type semiconductor/metal Schottky barrier diode between TN arrays and titanium substrate interface. The absorption edges shift towards shorter wavelengths with the decrease of the anodizing voltages, which is attributed to the quantum size effects. At room temperature, a novel wide PL band consisting of four overlapped peaks was observed in the photoluminescence (PL) measurements of the TN arrays. Such peaks were proposed to be resulted from the direct transition X1 → X2/X1, indirect transition Γ1 → X2/X1, self-trapped excitons and oxygen vacancies, respectively.  相似文献   

18.
The interaction of porous silicon (PS) with aqueous solutions of Fe(NO3)3 with different molar (M) concentrations causes introduction of iron ions into silicon pores (PS–Fe), formation of adsorbed iron coatings with different thicknesses, and an increase in the stability of PS layers, which is important for development of device structures based of PS. To treat PS layers with solutions by the immersion method, it is necessary to determine how this affects the spectral composition and intensity of photoluminescence (PL), as well as the kinetics of PL changes during long storage under atmospheric conditions. Upon treatment of freshly prepared PS by immersion into in a Fe(NO3)3 aqueous solution, it was found that, after short-term storage (up to 5 days) of the PS samples, the PL intensity increases by 7.5 and 3–3.6 times at low (0.2 M) and high (0.7–0.8 M) concentrations of Fe(NO3)3, respectively, compared to the PL intensity of an untreated PS layer. After long-term storage (4 months), the PL intensity of PS–Fe samples with concentrations of 0.1–0.2 and 0.7–0.8 M was observed to considerably increase (by 8–18 times) with unchanged position of the PL peak with respect to untreated PS. However, at the Fe(NO3)3 concentration of 0.3 М, the PL intensity decreases and the PL peak shifts to the blue, which is explained by incomplete coverage of the PS surface by an adsorbed iron layer. The kinetics of PL spectra during long-term storage is analyzed, and a model is proposed to explain the PL intensity and spectral composition.  相似文献   

19.
The purpose of this paper is to report some experimental results with HfSiO films formed on silicon substrates by electron beam evaporation (EB-PVD) and annealed at different temperatures. The images of atomic force microscope (AFM) indicated that HfSiO film annealed at 900 °C was still amorphous, with a surface roughness of 0.173 nm. X-ray photoelectron spectroscopy (XPS) analysis revealed that the chemical composition of the film was (HfO2)3(SiO2) and Hf-Si-O bonds existed in the annealed film. Electrical measurements showed that the equivalent oxide thickness (EOT) was 4 nm, the dielectric constant was around 6, the breakdown voltage was 10 MV/cm, the fixed charge density was −1.2 × 1012 cm−2, and the leakage current was 0.4 μA/cm2 at the gate bias of 2 V for 6 nm HfSiO film. The annealing after deposition effectively reduced trapping density and the leakage current, and eliminated hysteresis in the C-V curves. Annealing also induced SiO2 growth at the interface.  相似文献   

20.
Poly(3-methylthiophene) (P3MT)-based porous silicon (PS) substrates were fabricated and characterized by cyclic voltammetry, scanning electron microscopy, and auger electron spectroscopy. After doping urease (Urs) into the polymeric matrix, sensitivity and physicochemical properties of the P3MT-based PS substrate was investigated compared to planar silicon (PLS) and bulk Pt substrates. PS substrate was formed by electrochemical anodization in an etching solution composed of HF, H2O, and ethanol. Subsequently, Ti and Pt thin-films were sputtered on the PS substrate. Effective working electrode area (Aeff) of the Pt-deposited PS substrate was determined from a redox reaction of Fe(CN)63−/Fe(CN)64− redox couple in which nearly reversible cyclic voltammograms were obtained. The ip versus v1/2 plots showed that Aeff of the PS-based Pt thin-film electrode was 1.62 times larger than that of the PLS-based electrode.Electropolymerization of P3MT on both types of electrodes were carried out by the anodic potential scanning under the given potential range. And then, urease molecules were doped to the P3MT film by the chronoamperometry. Direct electrochemistry of a Urs/P3MT/Pt/Ti/PS electrode in an acetonitrile solution containing 0.1 mol/L NaClO4 was introduced compared to a P3MT/Pt/Ti/PS electrode at scan rates of 10 mV s−1, 50 mV s−1, and 100 mV s−1.Amperometric sensitivity of the Urs/P3MT/Pt/Ti/PS electrode was ca. 1.67 μA mM−1 per projected unit square centimeter, and that of the Urs/P3MT/Pt/Ti/PLS electrode was ca. 1.02 μA mM−1 per projected unit square centimeter in a linear range of 1-100 mM urea concentrations. 1.6 times of sensitivity increase was coincident with the results from cyclic voltammetrc analysis.Surface morphology from scanning electron microscopy (SEM) images of Pt-deposited PS electrodes before and after the coating of Urs-doped P3MT films showed that pore diameter and depth were 2 μm and 10 μm, respectively. Multilayered-film structures composed of metals and organics for both electrodes were also confirmed by auger electron spectroscopy (AES) depth profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号