首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Problems of scheduling n jobs on a single machine to maximize regular objective functions are studied. Precedence constraints may be given on the set of jobs and the jobs may have different release times. Schedules of interest are only those for which the jobs cannot be shifted to start earlier without changing job sequence or violating release times or precedence constraints. Solutions to the maximization problems provide an information about how poorly such schedules can perform. The most general problem of maximizing maximum cost is shown to be reducible to n similar problems of scheduling n?1 jobs available at the same time. It is solved in O(mn+n 2) time, where m is the number of arcs in the precedence graph. When all release times are equal to zero, the problem of maximizing the total weighted completion time or the weighted number of late jobs is equivalent to its minimization counterpart with precedence constraints reversed with respect to the original ones. If there are no precedence constraints, the problem of maximizing arbitrary regular function reduces to n similar problems of scheduling n?1 jobs available at the same time.  相似文献   

2.
This paper deals with a power-aware scheduling of preemptable independent jobs on identical parallel processors where ready time for each job is given and its completion time has to meet a given deadline. Jobs are described by (different) continuous, strictly concave functions relating their processing speeds at a time to the amount of power allotted at the moment. Power is a continuous, doubly constrained resource, i.e. both: its availability at each time instant and consumption over scheduling horizon are constrained. A methodology based on properties of minimum-length schedules is utilized to determine the existence of a feasible schedule for given amounts of energy and power. The question about minimum levels of power and energy ensuring the existence of a feasible schedule for a given set of jobs is also studied.  相似文献   

3.
The flowshop scheduling problems with n jobs processed on two or three machines, and with two jobs processed on k machines are addressed where jobs have random and bounded processing times. The probability distributions of random processing times are unknown, and only the lower and upper bounds of processing times are given before scheduling. In such cases, there may not exist a unique schedule that remains optimal for all feasible realizations of the processing times, and therefore, a set of schedules has to be considered which dominates all other schedules for the given criterion. We obtain sufficient conditions when transposition of two jobs minimizes total completion time for the cases of two and three machines. The geometrical approach is utilized for flowshop problem with two jobs and k machines.  相似文献   

4.
A scheduling problem is generally to order the jobs such that a certain objective function f(π) is minimized. For some classical scheduling problems, only sufficient conditions of optimal solutions are concerned in the literature. In this paper, we study the necessary and sufficient conditions by means of the concept of critical ordering (critical jobs and their relations). These results are meaningful in recognition and characterization of optimal solutions of scheduling problems.  相似文献   

5.
《Journal of Complexity》1998,14(2):190-209
We consider a scheduling problem with a single machine and a set of jobs which have to be processed sequentially. While waiting for processing, jobs may deteriorate, causing the processing requirement of each job to grow after a fixed waiting timet0. We prove that the problem of minimizing the makespan—completion time for all jobs—is NP-hard. Next we consider the problem for a natural special case where the job requirement grows linearly at a job-specific rate aftert0. We develop a fully polynomial time approximation scheme for the problem in this case. We also give further NP-hardness results, and a polynomial time algorithm for the case where the job-specific rate is proportional to the initial processing requirement of each job.  相似文献   

6.
The problem of preemptively scheduling a set of n independent jobs on an m-machine open shop is studied, and two results are obtained. The first indicates that constructing optimal flow-time schedules is NP-hard for m larger than two. The second result shows that the problem remains NP-hard for the two-processor case when all jobs must be completed by their respective deadlines.  相似文献   

7.
In this paper, we study multi-agent scheduling with release dates and preemption on a single machine, where the scheduling objective function of each agent to be minimized is regular and of the maximum form (max-form). The multi-agent aspect has three versions, namely ND-agent (multiple agents with non-disjoint job sets), ID-agent (multiple agents with an identical job set), and CO-agent (multiple competing agents with mutually disjoint job sets). We consider three types of problems: The first type (type-1) is the constrained scheduling problem, in which one objective function is to be minimized, subject to the restriction that the values of the other objective functions are upper bounded. The second type (type-2) is the weighted-sum scheduling problem, in which a positive combination of the objective functions is to be minimized. The third type (type-3) is the Pareto scheduling problem, for which we aim to find all the Pareto-optimal points and their corresponding Pareto-optimal schedules. We show that the type-1 problems are polynomially solvable, and the type-2 and type-3 problems are strongly NP-hard even when all jobs’ release dates are zero and processing times are one. When the number of the scheduling criteria is fixed and they are all lateness-like, such as minimizing Cmax, Fmax, Lmax, Tmax, and WCmax, where WCmax is the maximum weighted completion time of the jobs, the type-2 and type-3 problems are polynomially solvable. To address the type-3 problems, we develop a new solution technique that guesses the Pareto-optimal points through some elaborately constructed schedule-configurations.  相似文献   

8.
 The relation of time indexed formulations of nonpreemptive single machine scheduling problems to the node packing problem is established and then used to provide simple and intuitive alternate proofs of validity and maximality for previously known results on the facial structure of the scheduling problem. Previous work on the facial structure has focused on describing the convex hull of the set of feasible partial schedules, schedules in which not all jobs have to be started. The equivalence between the characteristic vectors of this set and those of the set of feasible node packings in a graph whose structure is determined by the parameters of the scheduling problem is established. The main contribution of this paper is to show that the facet inducing inequalities for the convex hull of the set of feasible partial schedules that have integral coefficients and right hand side 1 or 2 are the maximal clique inequalities and the maximally and sequentially lifted 5-hole inequalities of the convex hull of the set of feasible node packings in this graph respectively. Received: September 10, 2000 / Accepted: April 20, 2002 Published online: September 27, 2002 Key words. scheduling – node packing – polyhedral methods – facet defining graphs – lifted valid inequalities – facet inducing inequalities}  相似文献   

9.
We study the problem of scheduling n jobs that arrive over time. We consider a non-preemptive setting on a single machine. The goal is to minimize the total flow time. We use extra resource competitive analysis: an optimal off-line algorithm which schedules jobs on a single machine is compared to a more powerful on-line algorithm that has ? machines. We design an algorithm of competitive ratio , where Δ is the maximum ratio between two job sizes, and provide a lower bound which shows that the algorithm is optimal up to a constant factor for any constant ?. The algorithm works for a hard version of the problem where the sizes of the smallest and the largest jobs are not known in advance, only Δ and n are known. This gives a trade-off between the resource augmentation and the competitive ratio.We also consider scheduling on parallel identical machines. In this case the optimal off-line algorithm has m machines and the on-line algorithm has ?m machines. We give a lower bound for this case. Next, we give lower bounds for algorithms using resource augmentation on the speed. Finally, we consider scheduling with hard deadlines, and scheduling so as to minimize the total completion time.  相似文献   

10.
Many production scheduling systems use schedules of planned start/finish times for jobs up to a given planning horizon which includes the period between rescheduling operations. The integrity and usefulness of such schedules depends on the accuracy of the estimated time data which is available on the operations to be performed.There is a widespread belief that "on the average" if errors in the estimated time data are not biased then they will balance out and the schedules will give a reasonable plan for the period between rescheduling operations. This paper uses the elementary theory of the simple random walk to show that this assumption is not valid and that scheduling systems based upon it will not make sufficient allowance for the relatively highly probable events of permanent under-schedule or over-schedule conditions.  相似文献   

11.
We study the optimality of the very practical policy of equal allocation of jobs to batches in batch scheduling problems on an m-machine open shop. The objective is minimum makespan. We assume unit processing time jobs, machine-dependent setup times and batch availability. We show that equal allocation is optimal for a two-machine and a three-machine open shop. Although, this policy is not necessarily optimal for larger size open shops, it is shown numerically to produce very close-to-optimal schedules.  相似文献   

12.
We consider a scheduling problem with two identical parallel machines and n jobs. For each job we are given its release date when job becomes available for processing. All jobs have equal processing times. Preemptions are allowed. There are precedence constraints between jobs which are given by a (di)graph consisting of a set of outtrees and a number of isolated vertices. The objective is to find a schedule minimizing mean flow time. We suggest an O(n2) algorithm to solve this problem.The suggested algorithm also can be used to solve the related two-machine open shop problem with integer release dates, unit processing times and analogous precedence constraints.  相似文献   

13.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

14.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

15.
A frequently encountered scheduling problem is to determine a material and job ready time while simultaneously finding a production sequence given customer-specified due dates. Often the production times and due dates are vague. This paper presents an investigation of scheduling ready times for a set of jobs with fuzzy service times and due dates. The ready time is constrained in that the possibility that a job is late must not exceed a predefined value. The objective in such an instance is to maximize the ready time without violating these constraints. The steps necessary to determine the maximum ready time and cases in which this effort may be significantly reduced are presented for single machine and flow shop production systems. Finally, a branch and bound technique is developed for cases in which the optimal job sequence cannot be determined a priori.  相似文献   

16.
This paper studies the bicriteria problem of scheduling n jobs on a serial-batching machine to minimize maximum cost and makespan simultaneously. A serial-batching machine is a machine that can handle up to b jobs in a batch and jobs in a batch start and complete respectively at the same time and the processing time of a batch is equal to the sum of the processing times of jobs in the batch. When a new batch starts, a constant setup time s occurs. We confine ourselves to the unbounded model, where b ≥ n. We present a polynomial-time algorithm for finding all Pareto optimal solutions of this bicriteria scheduling problem.  相似文献   

17.
《Optimization》2012,61(12):1493-1517
The flow-shop minimum-length scheduling problem with n jobs processed on two machines is addressed where processing times are uncertain: lower and upper bounds for the random processing time are given before scheduling, but its probability distribution between these bounds is unknown. For such a problem, there often does not exist a dominant schedule that remains optimal for all possible realizations of the job processing times, and we look for a minimal set of schedules that is dominant. Such a minimal dominant set of schedules may be represented by a dominance digraph. We investigate useful properties of such a digraph.  相似文献   

18.
Discrete–continuous problems of scheduling nonpreemptable jobs on parallel machines are considered. The problems arise e.g. when jobs are assigned to multiple parallel processors driven by a common electric, hydraulic or pneumatic power source. Existing models have assumed job processing rates as a function of the number of jobs currently being processed, or equivalently the number of machines currently in operation. In this paper a more general model is proposed in which processing rates of a job assigned to a machine depend on the amount of a continuous, i.e. continuously divisible resource (e.g. power) allotted to this job at a time. Thus the problem consists of two interrelated subproblems: (i) to sequence jobs on machines, and (ii) to allocate the continuous resource among jobs already sequenced. We provide a comprehensive analysis of the problem. This includes properties of optimal schedules, efficiently (in particular analytically) solvable cases, formulations of the possibly simplest mathematical programming problems for finding optimal schedules in the general case, heuristics and the worst-case analysis. Although our objective function in this paper is to minimize makespan of a set of independent jobs, the presented methodology can be applied to other criteria, precedence-related jobs, and many resource types (apart from, or instead of machines).  相似文献   

19.
A Cayley map is an embedding of a Cayley graph where the cyclic ordering of generators around every vertex is the same. The involution indicating the position of mutually inverse generators in the cyclic ordering is called the distribution of inverses of a Cayley map. The Cayley maps whose distribution of inverses is linear (modulo the degree of the map) with 'slope' t are called t-balanced. An exponent of a Cayley map is a number e with the property that, roughly speaking, the Cayley map is isomorphic to its 'e-fold rotational image'.In the contribution we present results related to the construction of t-balanced Cayley maps which are not regular and do not have t as an exponent.  相似文献   

20.
This paper considers the problem of scheduling n jobs on a single machine where the job value deteriorates with its starting time. The objective of the problem is to maximize the cumulative value of all jobs. The problem is motivated from the real-life applications, such as movie scheduling, remanufacturing of high-technology products, web object transmission, and banner advertising. Unrestricted, truncated, and capacity constrained job value functions are considered. Some special cases of the problem, such as the unrestricted linear job value function, are polynomially solvable. The general problem is shown to be unary NP-hard and is modelled as a time index integer program. For the NP-hard cases, several heuristics are proposed. Results of the empirical evaluation of the relative performance of the proposed heuristics on critical parameters are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号