首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, the reduction of Eu3+ to Eu2+ in solids needs an annealing process in a reducing atmosphere. In this paper, it is of great interest and importance to find that the reduction of Eu3+ to Eu2+ can be realized in a series of alkaline-earth metal aluminum silicates MAl2Si2O8 (M=Ca, Sr, Ba) just in air condition. The Eu2+-doped MAl2Si2O8 (M=Ca, Sr, Ba) powder samples were prepared in air atmosphere by Pechini-type sol-gel process. It was found that the strong band emissions of 4f65d1-4f7 from Eu2+ were observed at 417, 404 and 373 nm in air-annealed CaAl2Si2O8, SrAl2Si2O8 and BaAl2Si2O8, respectively, under ultraviolet excitation although the Eu3+ precursors were employed. In addition, under low-voltage electron beam excitation, Eu2+-doped MAl2Si2O8 also shows strong blue or ultraviolet emission corresponding to 4f65d1-4f7 transition. The reduction mechanism from Eu3+ to Eu2+ in these compounds has been discussed in detail.  相似文献   

2.
The fluorescence and phosphorescence properties of Europium-doped MAl2Si2O8 (M=Ca, Sr, Ba) are reinvestigated and discussed on the basis of the propensity of an activator to agglomerate with an oxygen vacancy. Due to a stronger attraction of the anion vacancy towards Eu2+ cations going from BaAl2Si2O8 to SrAl2Si2O8 and CaAl2Si2O8 host lattices, the interpretation of the fluorescence spectra turns out to be less trivial in the Ca and Sr host lattices than in the Ba one and requests the account for Eu2+ cations lying at alkaline-earth sites with or without vacancy in their neighborhood. Phosphorescence in these compounds is highlighted.  相似文献   

3.
Rietveld refinements of X-ray powder diffraction data and vibrational spectroscopy have confirmed the crystal structure of Na2MMgP2O8 (M: Ba, Sr, Ca) prepared by a standard solid state reaction. They have glaserite-type layered structure. Na2MMgP2O8 has a trigonal P3? form for M=Ba, and monoclinic P21/c forms for M=Sr and Ca. The observed structural transition is analogous to the corresponding layered orthosilicate M3MgSi2O8.Eu2+-doped Na2MMgP2O8 exhibits an intense blue to violet emission under ultraviolet excitation, based on 5d-4f electron transition of Eu2+ ions. The emission character is very sensitive to the structural transition induced by M2+ and the subsequent site symmetry changes.  相似文献   

4.
Emission properties of Eu2+-doped M3MgSi2O8 (M: Ba, Sr, Ca) are discussed in terms of the crystal structure. When Ba2+ ions account for over one third of M2+ ions, M3MgSi2O8 crystallizes in glaserite-type trigonal structure, while Ba-free compounds crystallize in merwinite-type monoclinic structure. Under UV excitation, the Eu2+-doped glaserite-type compounds exhibit an intense blue emission assigned to 5d-4f electron transition at about 435 nm, regardless of the molar ratio of Ba2+, Sr2+ and Ca2+ ions. By contrast, the Eu2+-doped merwinite-type compounds show an emission color sensitive to the ratio. A detailed analysis of the emission spectra reveals that the emission chromaticity for the Eu2+-doped M3MgSi2O8 is composed of two emission peaks reflecting two different sites accommodating M2+ ion.  相似文献   

5.
Undoped and RE ions doped SrB2Si2O8 were successfully synthesized. After the application of UV and VUV spectroscopy measurements, we made a novel discovery that the emission of SrB2Si2O8:Eu prepared in air can be switched between red and blue by the different excitations. The information is that quite a part of Eu3+ was spontaneously reduced to Eu2+ in air. The PL properties of Eu2+ in VUV and Eu3+, Ce3+ and Tb3+ in UV-VUV region in SrB2Si2O8 were evaluated for the first time. The excitation mechanisms of the O2−-Eu3+ CT, Ce3+f-d and Tb3+f-d transitions in UV region as well as the Eu3+f-d, O2−-Ce3+ CT, O2−-Tb3+ CT transitions and the host lattice absorption in VUV region were established. In addition, first principles calculation within the LDA of the DFT was applied to calculate the electronic structure and linear optical properties of SrB2Si2O8 and the results were compared with the experimental data.  相似文献   

6.
Mn2+-doped M2Si5N8 (M=Ca, Sr, Ba) phosphors have been prepared by a solid-state reaction method at high temperature and their photoluminescence properties were investigated. The Mn2+-activated M2Si5N8 phosphors exhibit narrow emission bands in the wavelength range of 500-700 nm with peak center at about 599, 606 and 567 nm for M=Ca, Sr, Ba, respectively, due to the 4T1(4G)→6A1(6S) transition of Mn2+. The long-wavelength emission of Mn2+ ion in the host of M2Si5N8 is attributed to the effect of a strong crystal-field of Mn2+ in the nitrogen coordination environment. Also it is observed that there exists energy transfer between M2Si5N8 host lattice and activator (Mn2+). The potential applications of these phosphors have been pointed out.  相似文献   

7.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K.  相似文献   

8.
The influence of the replacement of Sr by Ca on structural and luminescence properties of Eu2+-doped Sr2Si5N8 is reported. The Rietveld refinement of the powder X-ray diffraction data shows that the Ca2+ ion preferentially occupies the larger Sr site in Sr2Si5N8:Eu2+. Although the excitation spectrum is hardly modified, the position of the emission band of Eu2+ can be tailored through partial replacement of Sr by Ca in Sr2Si5N8:Eu2+, resulting in red-emission shifting from 620 to 643 nm. Furthermore, (Sr, Ca)2Si5N8:Eu2+ shows high potential as a conversion phosphor for white-light LED applications due to similar absorption, conversion efficiency and thermal quenching behaviour for 465 nm excitation after the introduction of the Ca ion.  相似文献   

9.
Eu3+ photoluminescence is studied in La5Si2BO13 with apatite related structure. La5−xEuxSi2BO13 [x=0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0] compositions are synthesized. The emission results shows that Eu3+ ions occupy two different cationic sites viz., La(1) and La(2). The increase in the intensity of 5D0-7F0 line with increasing Eu3+ content shows the preferential occupancy of Eu3+ in La(2) site due to the existence of short La(2)-O(4) (free oxide ion) bond. The observation of antiferromagnetic interactions in Gd and Dy analogues supports the structural features elucidates from photoluminescence studies.  相似文献   

10.
The LiInW2O8:Eu3+, LiInW2O8:Dy3+ and LiInW2O8:Eu3+/Dy3+ phosphors were synthesized by solid-state reaction and their photoluminescence properties were studied. Under UV excitation, the LiInW2O8:Eu3+ phosphor exhibits an intense red emission whereas the LiInW2O8:Dy3+ and LiInW2O8:Dy3+/Eu3+ phosphors show a white emission. The WO6 octahedra play a major role in the luminescence of the host lattice, characterized by a blue emission under UV excitation. The emission of activator ion results from an efficient energy transfer from the LiInW2O8 host lattice to the Eu3+ and Dy3+ ions. The LiIn0.97Dy3+0.03W2O8 and LiIn0.965 Dy3+0.03Eu3+0.005W2O8 samples, optimized for white emission, are interesting candidates for solid-state lighting applications.  相似文献   

11.
The series of compounds M2EuRuO6 (M = Ca, Sr, Ba) has been studied by 151Eu Mössbauer spectroscopy. X-Ray data show them to be structurally derived from the ABO3 perovskite lattice, but only the Ba compound gives positive evidence to suggest ordering of the Eu3+Ru5+ cations. The 151Eu resonance shows magnetic hyperfine splitting at 4.2 K. The Ru5+OEu3+ORu5+ exchange takes place by admixture of low-lying excited states into the diamagnetic J = 0 ground-state of the Eu3+. The Curie temperatures are approximately 18, 31, and 42 K for the Ca, Sr, and Ba compounds. Detailed analysis shows that substantial disorder of cations occurs, being quite large for Ca, <8% for Sr, and <5% for Ba. However, it appears that considerable canting of the Ru5+ spins takes place in the Ba compound immediately below the Curie temperature as a result of the disorder and low anisotropy at the Ru sites. This effect is much reduced in the more distorted Sr compound.  相似文献   

12.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

13.
Barium calcium magnesium silicate (BaCa2MgSi2O8), a compound whose space group was obtained via X-ray diffraction data, was re-investigated using neutron diffraction techniques. A combined powder X-ray and neutron Rietveld method revealed that BaCa2MgSi2O8 crystallizes in the trigonal space group P3? (Z=1, a=5.42708(5) Å, c=6.79455(7) Å, V=173.310(4) Å3; Rp/Rwp=5.52%/7.63%), instead of the previously believed space group P3?m1. The difference in the two structures arises from the displacement of the O2 atom. Blue emission from Ba0.98Eu0.02Ca2MgSi2O8 under 325-nm excitation is ascribed to the 4f65d1→4f7 transitions of Eu2+ ions at Ba sites and Ca sites. Site assignment of Eu2+ ions in the titled compound was performed by analysis of emission spectra at temperatures in the range of 4.2-300 K.  相似文献   

14.
The optical properties of the BaMgAl10O17:Eu2+ (BAM)-Ba0.75Al11O17.25:Eu2+ (BAL) solid solution have been studied using VUV excitation, emission and reflectance spectroscopy. Three unique Eu2+ emission centers are observed in a ratio that depends on the composition of the host and the dopant concentration. Two of the emission centers are assigned to Eu on normal Beevers-Ross sites and Eu on anti Beevers-Ross sites. The defect chemistry of this system is modeled based on the known behavior of the spinel (MgO·nAl2O3) system. Based on this model, the third Eu center can be assigned either to Eu near Al vacancies or to Eu associated with O atoms in the cation layer. In undoped materials exciton emission is observed, peaking at 263 nm in BAM and 285 nm in BAL. This emission may be the mechanism of host-to-activator energy transfer in these phosphors.  相似文献   

15.
采用高温固相反应合成了M5-2xSmxNax(PO4)3F(M=Ca,Sr,Ba)荧光体,研究了其在真空紫外-可见光范围的发光特性。发现在Ca5(PO4)3F中Sm3+的电荷迁移带约在191 nm,在Sr5(PO4)3F中约在199 nm,而在Ba5(PO4)3F中约在204 nm,随着被取代碱土离子半径的增大电荷迁移能量逐渐减小。比较了M5(PO4)3F (M=Ca,Sr,Ba)中Sm3+和Eu3+电荷迁移能量的关系。  相似文献   

16.
采用高温固相法制备了(Ca,Me)La4Si3O13∶Eu3+(Me=Sr,Ba)系列红色荧光体,考察了Eu3+掺杂浓度和Sr2+,Ba2+置换对荧光体结构和发光特性的影响。Eu3+最佳掺杂浓度为nEu3+∶nLa3+=1∶7,5D0-7F2与5D0-7F1跃迁发射强度比为2.55。Eu3+掺杂使晶胞参数a和c呈线性变小,对c的影响大于a,使a/c比增大。Sr2+和Ba2+分别置换基质中的Ca2+可以形成完全固溶体,晶胞参数随Sr2+或Ba2+的置换量增加呈线性增大,使a/c比减小。各发射峰强度在Sr2+置换量为0.4 mol时出现极大值,但随Ba2+置换量的增加而不断增强,全置换后荧光强度最大。荧光体的色坐标为(0.638 5,0.353 0)。  相似文献   

17.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

18.
We use density functional theory (DFT) to study the molecular structure and electronic band structure of Sr2Si5N8:Eu2+ doped with trivalent lanthanides (Ln3+ = Ce3+, Tb3+, Pr3+). Li+ was used as a charge compensator for the charge imbalance caused by the partial replacement of Sr2+ by Ln3+. The doping of Ln lanthanide atom causes the structure of Sr2Si5N8 lattice to shrink due to the smaller atomic radius of Ln3+ and Li+ compared to Sr2+. The doped structure’s formation energy indicates that the formation energy of Li+, which is used to compensate for the charge imbalance, is the lowest when the Sr2 site is doped. Thus, a suitable Li+ doping site for double-doped lanthanide ions can be provided. In Sr2Si5N8:Eu2+, the doped Ce3+ can occupy partly the site of Sr12+ ([SrN8]), while Eu2+ accounts for Sr12+ and Sr22+ ([SrN10]). When the Pr3+ ion is selected as the dopant in Sr2Si5N8:Eu2+, Pr3+ and Eu2+ would replace Sr22+ simultaneously. In this theoretical model, the replacement of Sr2+ by Tb3+ cannot exist reasonably. For the electronic structure, the energy level of Sr2Si5N8:Eu2+/Li+ doped with Ce3+ and Pr3+ appears at the bottom of the conduction band or in the forbidden band, which reduces the energy bandgap of Sr2Si5N8. We use DFT+U to adjust the lanthanide ion 4f energy level. The adjusted 4f-CBM of CeSr1LiSr1-Sr2Si5N8 is from 2.42 to 2.85 eV. The energy range of 4f-CBM in PrSr1LiSr1-Sr2Si5N8 is 2.75–2.99 eV and its peak is 2.90 eV; the addition of Ce3+ in EuSr1CeSr1LiSr1 made the 4f energy level of Eu2+ blue shift. The addition of Pr3+ in EuSr2PrSr2LiSr1 makes part of the Eu2+ 4f energy level blue shift. Eu2+ 4f energy level in EuSr2CeSr1LiSr1 is not in the forbidden band, so Eu2+ is not used as the emission center.  相似文献   

19.
SrZnO2:Eu3+ has been synthesized by solid-state reaction and its photoluminescence in ultraviolet (UV)-vacuum ultraviolet (VUV) range was investigated. The broad bands around 254 nm are assigned to CT band of Eu3+-O2−. With the increasing of Eu3+ concentration, Eu3+ could occupy different sites, which leads to the broadening of CT band. A sharp band is observed in the region of 110-130 nm, which is related to the host absorption. The phosphors emit red luminescence centered at about 616 nm due to Eu3+5D07F2 both under 254 and 147 nm, but none of Eu2+ blue emission can be observed.  相似文献   

20.
A new series of gallozincates LnBaZn3GaO7 (Ln=La, Nd, Sm, Eu, Gd, Dy, Y) and new aluminozincates LnBaZn3AlO7 (Ln=Y, Eu, Dy) have been synthesized. Their structure refinements show that these phases belong to the “114” series, with hexagonal P63mc space group previously described for SmBaZn3AlO7. The photoluminescence study of these oxides shows that the Eu3+ activated LnBaZn3MO7 oxides with Ln=Y, La, Gd; and M=Al, Ga exhibit strong magnetic and electric dipole transitions (multiband emission) which is of interest for white light production. These results also confirm that the site occupied by Eu3+ is not strictly centrosymmetric. The electric dipole transition intensity is the highest in GdBaZn3MO7 [M=Al, Ga]: 0.05Eu3+ as compared with other Eu3+ activated compositions. This is due to the layer distortion around GdO6 octahedra when compared with YO6 and LaO6 octahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号