首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

2.
A new series of gallozincates LnBaZn3GaO7 (Ln=La, Nd, Sm, Eu, Gd, Dy, Y) and new aluminozincates LnBaZn3AlO7 (Ln=Y, Eu, Dy) have been synthesized. Their structure refinements show that these phases belong to the “114” series, with hexagonal P63mc space group previously described for SmBaZn3AlO7. The photoluminescence study of these oxides shows that the Eu3+ activated LnBaZn3MO7 oxides with Ln=Y, La, Gd; and M=Al, Ga exhibit strong magnetic and electric dipole transitions (multiband emission) which is of interest for white light production. These results also confirm that the site occupied by Eu3+ is not strictly centrosymmetric. The electric dipole transition intensity is the highest in GdBaZn3MO7 [M=Al, Ga]: 0.05Eu3+ as compared with other Eu3+ activated compositions. This is due to the layer distortion around GdO6 octahedra when compared with YO6 and LaO6 octahedra.  相似文献   

3.
The crystal structure of the promising optical materials Ln2M2+Ge4O12, where Ln=rare-earth element or Y; M=Ca, Mn, Zn and their solid solutions has been studied in detail. The tendency of rare-earth elements to occupy six- or eight-coordinated sites upon iso- and heterovalent substitution has been studied for the Y2−xErxCaGe4O12 (x=0-2), Y2−2xCexCa1+xGe4O12 (x=0-1), Y2Ca1−xMnxGe4O12 (x=0-1) and Y2−xPrxMnGe4O12 (x=0-0.5) solid solutions. A complex heterovalent state of Eu and Mn in Eu2MnGe4O12 has been found.  相似文献   

4.
Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth positions in the NaxSr3?2xLnx(PO4)2 (Ln = La to Tb) and KCaLn(PO4)2 phases (Ln = rare earth). Moreover, a common feature of both series is a particularly high splitting of the excitation 6P72 and 6P52 levels of the Gd3+ ions.  相似文献   

5.
Bulk and nanosized pyrochlore materials Ln2ZrTiO7 (Ln=La, Eu, Dy, Gd and Sm) have been prepared by the sol-gel method. All the samples were characterized by powder X-ray diffraction, Raman and X-ray photoelectron spectroscopy. Magnetic susceptibility (χ) measurements of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 were carried out by vibrating sample magnetometer in the temperature range 2-320 K. The variation of χ−1 (or χ) with temperature of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 follows the Curie law, intermediate formula and the Curie-Weiss law, respectively. From the linear portion of χT vs. T−1 plot of Eu2ZrTiO7 from 2 to 15 K, the classical nearest neighbor exchange (Jcl) and dipolar interactions (Dnn) are obtained. The XPS of Ln2ZrTiO7 (Ln=La, Eu, Dy and Gd) gave characteristic peaks for Ln, Ti, Zr and O. The satellite peaks are observed only for 3d La of La2ZrTiO7.  相似文献   

6.
The phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) and the solid solutions M1+xLa1?xMnO4 (M = Sr: 0 ? x ? 1; M = Ba: 0 ? x ? 0.50) have a K2NiF4-type structure. The ca ratio of the unit cell is related to the electronic configuration of the Mn3+ ions.  相似文献   

7.
The double phosphate Ca9Eu(PO4)7, obtained by solid state reaction, was found to be isotypic with Ca3(PO4)2, with space group R3c and unit cell parameters a=10.4546(1) Å, c=37.4050(3) Å, V=3540.67(9) Å3, Z=6. The structure parameters refined using the Rietveld method showed that europium shares positions M1, M2 and M3 with calcium, contradicting previously published Mössbauer results. Low temperature luminescence under selective excitation of Eu3+ in Ca9Y1−xEux(PO4)7 and in Ca9Eu(PO4)7 samples was studied, confirming the Eu3+ distribution into these sites. At 10 K, 5D07F0 emission lines of Eu3+ were observed at 578.5, 579.5, 580.1 nm for the M3, M1 and M2 sites, respectively. High temperature X-ray powder diffraction evidenced a second-order phase transition around 573 °C.  相似文献   

8.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

9.
10.
A new potassium bismuth phosphate-molybdate K2Bi(PO4)(MoO4) has been synthesized by the flux method and characterized by single-crystal and powder X-ray diffraction, IR spectroscopic studies. The compound crystallizes in the orthorhombic system with the space group Ibca and the cell parameters: a=19.7037(10), b=12.4752(10), c=7.0261(10). This phase exhibits an original layered structure, in which the [Bi(PO4)(MoO4)] layers consist of [Bi2Mo2O18] chains linked through single PO4 tetrahedra. The K+ cations interleaved between these layers exhibit a monocapped distorted cubic coordination.  相似文献   

11.
A series of red-emitting phosphors Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) have been successfully synthesized at 850 °C by solid state reaction. The excitation spectra of the two phosphors reveal two strong excitation bands at 396 nm and 466 nm, respectively, which match well with the two popular emissions from near-UV and blue light-emitting diode chips. The intensity of the emission from 5D0 to 7F2 of M2(Gd1−xEux)4(MoO4)7 phosphors with the optimal compositions of x=0.85 for Li or x=0.70 for Na is about five times higher than that of Y2O3:Eu3+. The quantum efficiencies of the entitled phosphors excited under 396 nm and 466 nm are also investigated and compared with commercial phosphors Sr2Si5N8:Eu2+ and Y3A5O12:Ce3+. The experimental results indicate that the Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) phosphors are promising red-emitting phosphors pumped by near-UV and blue light.  相似文献   

12.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

13.
Single crystals of NaY(PO3)4 and Ag0.07Na0.93Y(PO3)4 have been synthesized by flux method. These new compounds turned out to be isostructural to NaLn(PO3)4, with Ln=La, Nd, Gd and Er [monoclinic, P21/n, a=7.1615(2) Å, b=13.0077(1) Å, c=9.7032 (3) Å, β=90.55 (1)°, V=903.86(14) Å3 and Z=4]. The structure is based upon long polyphosphate chains running along the shortest unit-cell direction and made up of PO4 tetrahedra sharing two corners, linked to yttrium and sodium polyhedra. Infrared and Raman spectra at room temperature confirms this atomic arrangement. The luminescence of silver ions was reported in metaphosphate of composition Ag0.07Na0.93Y(PO3)4. One luminescent centre was detected and assigned to single Ag+ ions.  相似文献   

14.
Single crystals of the oxidephosphates TiIIITiIV3O3(PO4)3 (black), CrIII4TiIV27O24(PO4)24 (red-brown, transparent), and FeIII4TiIV27O24(PO4)24 (brown) with edge-lengths up to 0.3 mm were grown by chemical vapour transport. The crystal structures of these orthorhombic members (space group F2dd ) of the lazulite/lipscombite structure family were refined from single-crystal data [TiIIITiIV3O3(PO4)3: Z=24, a=7.3261(9) Å, b=22.166(5) Å, c=39.239(8) Å, R1=0.029, wR2=0.084, 6055 independent reflections, 301 variables; CrIII4TiIV27O24(PO4)24: Z=1, a=7.419(3) Å, b=21.640(5) Å, c=13.057(4) Å, R1=0.037, wR2=0.097, 1524 independent reflections, 111 variables; FeIII4TiIV27O24(PO4)24: Z=1, a=7.4001(9) Å, b=21.7503(2) Å, c=12.775(3) Å, R1=0.049, wR2=0.140, 1240 independent reflections, 112 variables). For TiIIITiIVO3(PO4)3 a well-ordered structure built from dimers [TiIII,IV2O9] and [TiIV,IV2O9] and phosphate tetrahedra is found. The metal sites in the crystal structures of Cr4Ti27O24(PO4)24 and Fe4Ti27O24(PO4)24, consisting of dimers [MIIITiIVO9] and [TiIV,IV2O9], monomeric [TiIVO6] octahedra, and phosphate tetrahedra, are heavily disordered. Site disorder, leading to partial occupancy of all octahedral voids of the parent lipscombite/lazulite structure, as well as splitting of the metal positions is observed. According to Guinier photographs TiIII4TiIV27O24(PO4)24 (a=7.418(2) Å, b=21.933(6) Å, c=12.948(7) Å) is isotypic to the oxidephosphates MIII4TiIV27O24(PO4)24 (MIII: Cr, Fe). The UV/vis spectrum of Cr4Ti27O24(PO4)24 reveals a rather small ligand-field splitting Δo=14,370 cm−1 and a very low nephelauxetic ratio β=0.72 for the chromophores [CrIIIO6] within the dimers [CrIIITiIVO9].  相似文献   

15.
Several compounds of the (Na1−xLix)CdIn2(PO4)3 solid solution were synthesized by a solid-state reaction in air, and pure alluaudite-like compounds were obtained for x=0.00, 0.25, and 0.50. X-ray Rietveld refinements indicate the occurrence of Cd2+ in the M(1) site, and of In3+ in the M(2) site of the alluaudite structure. This non-disordered cationic distribution is confirmed by the sharpness of the infrared absorption bands. The distribution of Na+ and Li+ on the A(1) and A(2)′ crystallographic sites cannot be accurately assessed by the Rietvled method, probably because the electronic densities involved in the Na+→Li+ substitution are very small. A comparison with the synthetic alluaudite-like compounds, (Na1−xLix)MnFe2(PO4)3, indicates the influence of the cations occupying the M(1) and M(2) sites on the coordination polyhedra morphologies of the A(1) and A(2)′ crystallographic sites.  相似文献   

16.
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln3+ ion mainly shows its characteristic emissions in the core-shell particles from Gd2O3:Ln3+ (Eu3+, Tb3+, Sm3+, Dy3+, Er3+, Ho3+) shells.  相似文献   

17.
A mixed-valent molybdenotungstophosphate, Nax(Mo, W)2O3(PO4)2 (x 0.75) has been isolated for the first time. It crystallizes in the space group P 21/m with a = 7.200(1) Å, b = 6.369(1) Å, c = 9.123(1) Å, and β = 106.29(1)°. Its structure consists of M2PO13 units built up of two M O6 octahedra (M = Mo, W) and one PO4 tetrahedron sharing their apices as already observed in several molybdenum phosphates. These units share their apices with PO4 tetrahedra forming [M2P2O15] chains running along . The host lattice [(Mo, W)2P2O11] can be described by the assemblage of such chains or by the assemblage of [MPO8] chains running along , in which one PO4 tetrahedron alternates with one MO6 octahedron. The tridimensional framework [Mo, WP2O11] delimits tunnels running along , occupied by sodium with two kinds of coordination, 6 and 5. The distribution of the different species, in the octahedral sites according to the formulation Na0.75(MoVI0.42WVI0.58)M1 (MoV0.75WVI0.25)2O3(PO4)2, is discussed.  相似文献   

18.
Rietveld refinements of X-ray powder diffraction data and vibrational spectroscopy have confirmed the crystal structure of Na2MMgP2O8 (M: Ba, Sr, Ca) prepared by a standard solid state reaction. They have glaserite-type layered structure. Na2MMgP2O8 has a trigonal P3? form for M=Ba, and monoclinic P21/c forms for M=Sr and Ca. The observed structural transition is analogous to the corresponding layered orthosilicate M3MgSi2O8.Eu2+-doped Na2MMgP2O8 exhibits an intense blue to violet emission under ultraviolet excitation, based on 5d-4f electron transition of Eu2+ ions. The emission character is very sensitive to the structural transition induced by M2+ and the subsequent site symmetry changes.  相似文献   

19.
Compounds A2/3A1/3M2XO8 (A=Tl, Rb, Cs; A′=Na, Ag; M=Nb, Ta; X=P, As) have been synthesized using the ceramic method. The sodium and potassium compounds (A= Na and K) have been prepared by an ion exchange reaction starting from their thallium analogues. These materials are isotypic with Tl1−xNaxNb2PO8 (x=0.21) the structure of which has been determined by using X-ray single-crystal data. The space group is R32, the cell constants are aH=13.369(2), cH=10.324(3) Å and z=9. This compound is isostructural with Ca0.5+xCs2 Nb6P3O24. Its three-dimensional framework [Nb2PO8]n, built up from NbO6 octahedra and corner-sharing PO4 tetrahedra, delimits tunnels running along cH and cavities accommodating Tl+ and Na+ cations, respectively. The K2/3Na1/3Nb2PO8 structure, refined using X-ray powder data, showed that K+ cations are spread like the Tl+ ones over many sites, but more excentred from the tunnel axis. The isotypy of these compounds is also revealed by the similarity of the infrared and Raman spectra. The nonlinear optical study showed a behavior similar to that of the KDP for all the compounds. The ionic conductivity measurements gave high activation energies and low conductivity values for these materials.  相似文献   

20.
Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R=La, Gd, Y) was synthesized by the general high-temperature solid-state reaction. Excitation and emission spectra as well as luminescence decay were used to characterize the phosphors. Photoluminescence excitation and emission spectra showed that the phosphor could be efficiently excited by UV-vis light from 260 to 450 nm to give bright red emission assigned to the transition (5D07F2) at 612 nm. The richness of the red color has been verified by determining their color coordinates (XY) from the CIE standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号