首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 μL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals.Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 μg L−1 with a detection limit of 0.5 μg L−1. The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 μg L−1 of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 μg L−1 ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.  相似文献   

2.
In this research, we combined ionic liquid-based dispersive liquid-liquid micro-extraction (IL-based DLLME) with stopped-flow spectrofluorometry (SFS) to evaluate the concentration of aluminum in different real samples at trace level. 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid and 8-hydroxyquinoline (oxine), which forms a highly fluorescent complex with Al3+, were chosen as the extraction solvent and chelating agent, respectively. The hydrophobic Al-oxine complex was extracted into the [Hpy][PF6] and separated from the aqueous phase. Then, the concentration of the enriched aluminum in the sediment phase was determined by SFS. Some effective parameters that influence the SFS signals and the micro-extraction efficiency, such as the suction and sending time, the concentration of the chelating agent, pH, the amount of the ionic liquid, the type of disperser solvent and diluting agent, ionic strength, extraction time, equilibration temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.05 μg L−1 and 100, respectively. The relative standard deviation (RSD) for six replicate determinations of 6 μg L−1 Al was 1.7%. The calibration graph using the pre-concentration system was linear in the range of 0.06-15 μg L−1 with a correlation coefficient of 0.9989. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of aluminum in several water, fruit juice and food samples.  相似文献   

3.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

4.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

5.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

6.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

7.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

8.
A simple and cost effective sample pre-treatment method, dispersive liquid–liquid microextraction (DLLME), has been developed for the extraction of six fluoroquinolones (FQs) from chicken liver samples. Clean DLLME extracts were analyzed for fluoroquinolones using liquid chromatography with diode array detection (LC-DAD). Parameters such as type and volume of disperser solvent, type and volume of extraction solvent, concentration and composition of phosphoric acid in the disperser solvent and pH were optimized. Linearity in the concentration range of 30–500 μg kg−1 was obtained with regression coefficients ranging from 0.9945 to 0.9974. Intra-day repeatability expressed as % RSD was between 4 and 7%. The recoveries determined in spiked blank chicken livers at three concentration levels (i.e. 50, 100 and 300 μg kg−1) ranged from 83 to 102%. LODs were between 5 and 19 μg kg−1 while LOQs ranged between 23 and 62 μg kg−1. All of the eight chicken liver samples obtained from the local supermarkets were found to contain at least one type of fluoroquinolone with enrofloxacin being the most commonly detected. Only one sample had four fluoroquinolone antibiotics (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin). Norfloxacin which is unlicensed for use in South Africa was also detected in three of the eight chicken liver samples analyzed. The concentration levels of all FQs antibiotics in eight samples ranged from 8.8 to 35.3 μg kg−1, values which are lower than the South African stipulated maximum residue limits (MRL).  相似文献   

9.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

10.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

11.
In this study, a simple, rapid and efficient method has been developed for the extraction and preconcentration of different classes of pesticides, carbofuran (insecticide), clomazone (herbicide) and tebuconazole (fungicide) in aqueous samples by dispersive liquid-liquid microextraction (DLLME) coupled with liquid chromatography-tandem mass spectrometric detection. Some experimental parameters that influence the extraction efficiency, such as the type and volume of the disperser solvents and extraction solvents, extraction time, speed of centrifugation, pH and addition of salt were examined and optimized. Under the optimum conditions, the recoveries of pesticides in water at spiking levels between 0.02 and 2.0 μg L−1 ranged from 62.7% to 120.0%. The relative standard deviations varied between 1.9% and 9.1% (n = 3). The limits of quantification of the method considering a 50-fold preconcentration step were 0.02 μg L−1. The linearity of the method ranged from 1.0 to 1000 μg L−1 for all compounds, with correlation coefficients varying from 0.9982 to 0.9992. Results show that the method we propose can meet the requirements for the determination of pesticides in water samples. The comparison of this method with solid-phase extraction indicates that DLLME is a simple, fast, and low-cost method for the determination of pesticides in natural waters.  相似文献   

12.
The process of ultrasound-assisted emulsification-microextraction (USAEME) was successfully applied for the first time for the extraction and pre-concentration of trace cadmium from water samples, followed by flame atomic absorption spectrometry (FAAS). In the proposed approach, sodium diethyldithiocarbamate trihydrate solution (NaDDTC·3H2O) was used as a chelating agent and carbon tetrachloride was selected as extraction solvent. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters included extraction solvent type as well as extraction volume, time, temperature, and pH, the amount of the chelating agent, and salt effect. Under optimum conditions, an enrichment factor of 95 was obtained from only 5.0 mL of water sample. The calibration graph was linear in the range of 10-600 μg L−1 with a detection limit of 0.91 μg L−1. The relative standard deviation (R.S.D) for ten replicate measurements of 50 and 500 μg L−1 of cadmium were 2.56 and 1.62%. This proposed method was successfully applied in the analysis of four real environmental water samples and good spiked recoveries over the range of 96.5-101.7% were obtained.  相似文献   

13.
The paper described a new ionic liquid, 1,3-dibutylimidazolium hexafluorophosphate, as extraction solvent for extraction and preconcentration of organophosphorus pesticides (fenitrothion, parathion, fenthion and phoxim) from water and fruit samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. The effects of experimental parameters, such as extraction solvent volume, disperser solvent and its volume, extraction and centrifugal time, sample pH, extraction temperature and salt addition, on the extraction efficiency were investigated. An extraction recovery of over 75% and enrichment factor of over 300-fold were obtained under the optimum conditions. The linearity relationship was also observed in the range of 5–1000 μg L−1 with the correlation coefficients (r2) ranging from 0.9988 to 0.9999. Limits of detection were 0.01–0.05 μg L−1 for four analytes. The relative standard deviations at spiking three different concentration levels of 20, 100 and 500 μg L−1 varied from 1.3–2.7, 1.4–1.9 and 1.1–1.7% (n = 7), respectively. Three real samples including tap water, Yellow River water and pear spiked at three concentration levels were analyzed and yielded recoveries ranging from 92.7–109.1, 95.0–108.2 and 91.2–108.1%, respectively.  相似文献   

14.
A simple, rapid and efficient dispersive liquid–liquid microextraction based on the solidification of floating organic drop (DLLME–SFO) method, followed by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for the simultaneous preconcentration and determination of heavy metals in water samples. One variable at a time method was applied to select the type of extraction and disperser solvents. Then, an orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters on the extraction efficiency. Under the best experimental conditions (extraction solvent: 140 μL of 1-undecanol; disperser solvent: 2.0 mL of acetone; ligand to metal mole ratio: 20; pH: 6 and without salt addition), the enhancement factor ranged from 57 to 96. The calibration graphs were linear in the range of 0.5–250 μg L−1 for Mn, 1.25–250 μg L−1 for Cr, Co and Cu with correlation coefficient (r) better than 0.990. The detection limits were between 0.1 and 0.3 μg L−1. Finally, the developed method was successfully applied to extraction and determination of the mentioned metal ions in the tap, sea and mineral water samples and satisfactory results were obtained.  相似文献   

15.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

16.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

17.
Anthemidis AN  Ioannou KI 《Talanta》2011,84(5):1215-1220
A novel, simple and efficient sequential injection (SI) on-line dispersive liquid-liquid microextraction (DLLME) procedure was described and was demonstrated for the assay of trace silver determination by flame atomic absorption spectrometry (FAAS). Fatty alcohols, such as 1-undecanol and 1-dodecanol, were examined as extraction solvents at microlitre volume, overcoming a major problem of the DLLME methods, the high toxicity of the extraction solvents used. Furthermore, the extractant fine droplets can be easily separated from the aqueous phase using a micro-column packed with a novel hydrophobic sorbent material, poly(etheretherketone)-turnings. In this method fine droplets of 1-dodecanol were on-line generated and dispersed into the stream of aqueous sample. By this continuous process, silver diethyldithiocarbamate (Ag-DDTC) complex was formed and extracted into the dispersed extraction solvent. No specific conditions such as ice bath for low temperature or special tools are required for extractant isolation. All significant parameters that influence the efficiency of the system such as sample acidity, concentration of complexing reagent and extraction solvent, flow-rate of disperser and sample solution as well as the preconcentration time were investigated and optimized by full factorial design. Under the optimized conditions a detection limit of 0.15 μg L−1, a relative standard deviation (RSD) of 2.9% at 5.00 μg L−1 Ag(I) concentration level and an enhancement factor of 186 were obtained. The developed method was evaluated by analyzing certified reference material and was applied successfully to the analysis of environmental water samples.  相似文献   

18.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

19.
A rapid and effective preconcentration method for extraction of rhodamine 6G was developed by using a dispersive liquid-liquid microextraction (DLLME) prior to UV-vis spectrophotometry. In this extraction method, a suitable mixture of acetone (disperser solvent) and chloroform (extractant solvent) was injected rapidly into a conical test tube containing aqueous solution of rhodamine 6G. Therefore, a cloudy solution was formed. After centrifugation of the cloudy solution, sedimented phase was evaporated, reconstituted with methanol and measured by UV-vis spectrophotometry. Different operating variables such as type and volume of extractant solvent, type and volume of disperser solvent, pH of the sample solution, salt concentration and extraction time were investigated. The optimized conditions (extractant solvent: 300 μL of chloroform, disperser solvent: 3 mL of acetone, pH: 8 and without salt addition) resulted in a linear calibration graph in the range of 5-900 ng mL−1 of rhodamine 6G in initial solution with R2 = 0.9988 (n = 5). The Limits of detection and quantification were 2.39 and 7.97 ng mL−1, respectively. The relative standard deviation for 50 and 250 ng mL−1 of rhodamine 6G in water were 2.88% and 1.47% (n = 5), respectively. Finally, the DLLME method was applied for determination of rhodamine 6G in different industrial waste waters.  相似文献   

20.
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 μg L−1, with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 μg L−1 (λ-cyhalothrin), 3.0-60.0 μg L−1 (methyl parathion), 9.0-60.0 μg L−1 (ethion), and 9.0-30.0 μg L−1 (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n = 26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 μg L−1. The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号