首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise mechanism and dynamics of charge generation and recombination in bulk heterojunction polymer:fullerene blend films typically used in organic photovoltaic devices have been intensively studied by many research groups, but nonetheless remain debated. In particular the role of interfacial charge-transfer (CT) states in the generation of free charge carriers, an important step for the understanding of device function, is still under active discussion. In this article we present direct optical probes of the exciton dynamics in pristine films of a prototypic polycarbazole-based photovoltaic donor polymer, namely poly[N-11'-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), as well as the charge generation and recombination dynamics in as-cast and annealed photovoltaic blend films using methanofullerene (PC(61)BM) as electron acceptor. In contrast to earlier studies we use broadband (500-1100 nm) transient absorption spectroscopy including the previously unobserved but very important time range between 2 ns and 1 ms, which allows us not only to observe the entire charge carrier recombination dynamics but also to quantify the existing decay channels. We determine that ultrafast exciton dissociation occurs in blends and leads to two separate pools of products, namely Coulombically bound charge-transfer (CT) states and unbound (free) charge carriers. The recombination dynamics are analyzed within the framework of a previously reported model for poly(3-hexylthiophene):PCBM (Howard, I. A. J. Am. Chem. Soc. 2010, 132, 14866) based on concomitant geminate recombination of CT states and nongeminate recombination of free charge carriers. The results reveal that only ~11% of the initial photoexcitations generate interfacial CT states that recombine exclusively by fast nanosecond geminate recombination and thus do not contribute to the photocurrent, whereas ~89% of excitons create free charge carriers on an ultrafast time scale that then contribute to the extracted photocurrent. Despite the high yield of free charges the power conversion efficiency of devices remains moderate at about 3.0%. This is largely a consequence of the low fill factor of devices. We relate the low fill factor to significant energetic disorder present in the pristine polymer and in the polymer:fullerene blends. In the former we observed a significant spectral relaxation of exciton emission (fluorescence) and in the latter of the polaron-induced ground-state bleaching, implying that the density of states (DOS) for both excitons and charge carriers is significantly broadened by energetic disorder in pristine PCDTBT and in its blend with PCBM. This disorder leads to charge trapping in solar cells, which in turn causes higher carrier concentrations and more significant nongeminate recombination. The nongeminate recombination has a significant impact on the IV curves of devices, namely its competition with charge carrier extraction causes a stronger bias dependence of the photocurrent of devices, in turn leading to the poor device fill factor. In addition our results demonstrate the importance of ultrafast free carrier generation and suppression of interfacial CT-state formation and question the applicability of the often used Braun-Onsager model to describe the bias dependence of the photocurrent in polymer:fullerene organic photovoltaic devices.  相似文献   

2.
We directly observed charge separation and a space‐charge region in an organic single‐crystal p–n heterojunction nanowire, by means of scanning photocurrent microscopy. The axial p–n heterojunction nanowire had a well‐defined planar junction, consisted of P3HT (p‐type) and C60 (n‐type) single crystals and was fabricated by means of the recently developed inkjet‐assisted nanotransfer printing technique. The depletion region formed at the p–n junction was directly observed by exploring the spatial distribution of photogenerated carriers along the heterojunction nanowire under various applied bias voltages. Our study provides a facile approach toward the precise characterization of charge transport in organic heterojunction systems as well as the design of efficient nanoscale organic optoelectronic devices.  相似文献   

3.
In situ synthesized MWNT-CuS hybrid nanostructures were fabricated into ultrasensitive photodetectors. Upon exposure to light illumination, the MWNT-CuS devices showed pronounced photocurrent with a response time less than 0.5 s even under zero bias. The response mechanism could be attributed to a fast charge dissociation process at the interfaces of MWNTs and CuS nanoparticles due to the formation of the Schottky junctions.  相似文献   

4.
In this paper, photoexcitation processes in the bilayer devices based on inorganic materials and poly(N-vinylcarbazole) (PVK) were investigated. In order to clarify the roles of inorganic materials in photoconductive properties of bilayer devices, TiO2 and ZnS were chosen to combine with PVK. A model for generation of photocurrent (Iph) in single layer device of PVK was obtained. It is deduced that the recombination rate constant (Pcomb) and the ionization rate constant (y) ofexcitons should be considered as the most important factors for Iph. For inorganic materials (TiO2 or ZnS)/PVK bilayer devices, in reverse bias of-4 V, the photocurrent of 115 mA/cm^2 in the TiO2/PVK device was observed, but the photocurrent in the ZnS/PVK device was only 10 mA/cma under the illumination light of 340 nm and the light intensity of 14.2 mW/cm^2. The weaker photocurrent is attributed to the absorption of ZnS within UV region and the energy offset at the interface between PVK and ZnS, which impedes the transport of charge carriers.  相似文献   

5.
The influence of various potential windows on the synthesis of α-PbO and the uniformity of its formation over the entire surface of the lead electrode has been studied by scanning a laser beam over the entire surface and measuring the corresponding photocurrent using the photoelectrochemical laser imaging technique. This technique revealed that a very uniformly distributed highly (110) plane oriented thin film of α-PbO is obtained by potentiodynamic anodization of the lead electrode in an alkaline medium at 80 °C in the potential range of ?0.32 to +0.08 V vs SCE, giving the highest (73%) quantum yield at 480 nm, an open-circuit photopotential of 800 mV and a short-circuit photocurrent of 5.5 mA cm?2. Gärtner analysis suggests that the highest photoactivity achieved with this material is due to the formation of a large space charge width (0.63 m) and diffusion length (0.36 m) of the minority carriers and absorption of almost 100% of the light (480 nm) within the space charge and diffusion regions.  相似文献   

6.
用汞溴红(Mercurochrome)作敏化剂敏化TiO2纳米多孔膜电极,UV-Vis,光电流作用谱和SPS谱表明,该敏化剂能有效地敏化TiO2电极,并且染料聚集体能扩大染料的敏化区间,增加了太阳光的利用效率,对电极施加不同的偏压,测试电极产生的瞬态光电流,研究了偏压对光生电荷转移及复合速率的影响,从不同方向照射电极,对阳极光电流影响显著,结合电化学、光电化学原理对这些现象进行了讨论.  相似文献   

7.
Lead selenide is a narrow gap semiconductor material. It finds applications in infrared emitting and detecting devices. Their performance is closely related to charge carrier recombination at the surface, which can be reduced by passivation, e.g. due to PbSeO3 formation by anodic oxidation in alkaline solutions. In dependence on the pretreatment of the surface, two different types of oxide formation were observed. To determine the electronic properties of the anodic oxide, the wavelength dependence of the photocurrent was investigated. The energy of the band gap of both types of anodic oxide on PbSe has been determined to be 2.4 eV for the direct and 1.8 eV for the indirect band gap. A weakening of the photocurrent generated in the bulk (PbSe) due to scattering or absorption within the oxide confirms the potential dependence of the oxide thickness for a high field growth mechanism.  相似文献   

8.
Given its well‐ordered continuous π stacking of nucleobases, DNA has been considered as a biomaterial for charge transfer in biosensors. For cathodic photocurrent generation resulting from hole transfer in DNA, sensitivity to DNA structure and base‐pair stacking has been confirmed. However, such information has not been provided for anodic photocurrent generation resulting from excess‐electron transfer in DNA. In the present study, we measured the anodic photocurrent of a DNA‐modified Au electrode. Our results demonstrate long‐distance excess‐electron transfer in DNA, which is dominated by a hopping mechanism, and the photocurrent generation is sequence dependent.  相似文献   

9.
《中国化学》2017,35(10):1627-1632
A bio‐inspired graphene/Au@ZnO photoelectrode has been prepared via breath figure method, in which Au@ZnO nanospheres were uniformly distributed in the whole honeycomb film. The size of the honeycomb holes effects the light using efficiency. The honeycomb film with smaller holes in more ordered array shows better antireflective property. All the formed graphene/Au@ZnO honeycomb photoelectrodes show a fast, stable, and reversible response of photocurrent accompanied by each switch‐on and switch‐off event. Au@ZnO ‐modified graphene honeycomb film can combine the advantages of increased light harvesting provided by honeycomb structure, efficient charge separation from Au nanoparticles (NPs ), and efficient electron transfer provided by graphene. Au@ZnO ‐ modified graphene honeycomb film shows a two‐fold increase of photocurrent generation than ZnO ‐modified graphene honeycomb film and a three‐fold increase of photocurrent generation than Au@ZnO ‐modified graphene smooth film, respectively. The rational design and engineering of multi components with different functions in a hybrid bio‐inspired structure hold great promise for further efficient solar energy conversion devices.  相似文献   

10.
在纳米半导体中由于纳米效应(如量子尺寸效应),其电子结构与块体半导体有所不同。进一步地,当纳米半导体与基底和其他组分结合制成器件后,其性质又受到基底或其他组分的影响,这两点导致了基于纳米半导体的光电器件的性能以及相应表征方法也大不相同。将光电流谱、光致发光光谱和紫外可见吸收光谱三种技术有机地结合起来,可以更好地表征纳米半导体的电子性质和光电性能。本文根据纳米半导体材料与电极的电子性质特点及其测量,结合本课题组前期工作,举例介绍三种谱学方法相结合应用于探究光伏电池和电致发光器件的纳米半导体材料的性能,以及纳米半导体材料表面态的表征。  相似文献   

11.
李博 《物理化学学报》2012,28(1):217-222
制备了铌镁酸铅-钛酸铅(PMN-PT)铁电薄膜,并通过紫外-可见(UV-Vis)透射光谱、X射线衍射(XRD)和原子力显微镜(AFM)对其进行了表征.为了研究体异质结型有机共混膜的光电流特性,制作了氧化铟锡(ITO)/PMN-PT/有机共混膜/铝(Al)的光伏器件,调制激光照射下外加偏压的极性和大小变化将直接改变瞬态光电流的极性和大小,从而可在实验上证明传统体异质结型有机光伏器件的光电流极性是由器件阴、阳电极的功函数差所导致的内建电场的方向决定.同时也提出了一种利用铁电薄膜来研究体异质结型有机光伏器件光电流特性的新方法.  相似文献   

12.
Doping a photoconductive mesogenic material with a small amount of functionalized fullerene significantly increases the photocurrent. LESR studies show the appearance of a long-lived charge-separated state under light illumination, with a negative charge on the fullerene moiety. This confirms that in the system studied the fullerene unit acts as an electron trap. In the lamellar structure of the liquid crystalline phase the fullerene units and mesogenic cores are separated, which ensures better space separation between negative and positive charges. As a result the charge recombination is slowed and the photocurrent is amplified.  相似文献   

13.
Charge-carrier mobility has been investigated by time-of-flight (TOF) transient photocurrent in a lateral transport configuration in highly crystalline thin films of 2,7-dioctyl[1]benzothieno [3,2-b][1] benzothiophene (C8-BTBT) grown by a zone-casting alignment technique. High TOF mobility has been revealed that it is consistent with the delocalized nature of the charge transport in this material, yet it featured a positive temperature dependence at \( T \ge 295\,{\text{K}} \). Moreover, the mobility was surprisingly found to decrease with electric field in the high-temperature region. These observations are not compatible with the conventional band-transport mechanism. We have elaborated an analytic model based on effective-medium approximation to rationalize the puzzling findings. The model considers the delocalized charge transport within the energy landscape formed by long-range transport band-edge variations in imperfect organic crystalline materials and accounts for the field-dependent effective dimensionality of charge transport percolative paths. The results of the model calculations are found to be in good agreement with experimental data.  相似文献   

14.
Induced electrokinetic transport in micro-nanofluidic interconnect devices   总被引:3,自引:0,他引:3  
Hybrid micro-nanofluidic interconnect devices can be used to control analyte transfer from one microchannel to the other through a nanochannel under rest, injection, and recovery stages of operation by varying the applied potential bias. Using numerical simulations based on coupled transient Poisson-Nernst-Planck and Stokes equations, we examine the electrokinetic transport in a gateable device consisting of two 100 microm long, 1 microm wide negatively charged microchannels connected by a 1 microm long, 10 nm wide positively charged nanochannel under both positive and negative bias potentials. During injection, accumulation of ions is observed at the micro-nano interface region with the positive potential and depletion of ions is observed at the other micro-nano junction region. Net space charge in the depletion region gives rise to nonlinear electrokinetic transport during the recovery stage due to induced pressure, induced electroosmotic flow of the second kind, and complex flow circulations. Ionic currents are computed as a function of time for both positive and negative bias potentials for the three stages. Analytical expressions derived for ion current variation are in agreement with the simulated results. In the presence of multiple accumulation or depletion regions, we show that a hybrid micro-nano device can be designed to function as a logic gate.  相似文献   

15.
Instead of conventional semiconductor photoelectrodes, herein, we focus on BiFeO3 ferroelectric photoelectrodes to break the limits imposed by common semiconductors. As a result of their prominent ferroelectric properties, the photoelectrodes are able to tune the transfer of photo‐excited charges generated either in BiFeO3 or the surface modifiers by manipulating the poling conditions of the ferroelectric domains. At 0 V vs Ag/AgCl, the photocurrent could be switched from 0 μA cm?2 to 10 μA cm?2 and the open‐circuit potential changes from 33 mV to 440 mV, when the poling bias of pretreatment is manipulated from ?8 V to +8 V. Additionally, the pronounced photocurrent from charge injection of the excited surface modifiers could be quenched by switching the poling bias from +8 V to ?8 V.  相似文献   

16.
A light-emitting poly (distyryldimethylbenzene-co-triethylene glycol) rod-coil block copolymer was used to fabricate films with three-dimensionally ordered honeycomb structures by the breath-figure method. Photocurrent generation and photovoltaic performance are studied, and the dependence of photocurrent on applied electric field is investigated. Introducing the ordered porous structure significantly improves the photoelectric conversion behavior, because porous structures not only enhance the light-harvesting efficiency but also benefit charge separation and charge transfer. This phenomenon may have great prospects for enhancing the photovoltaic behavior of organic thin-film devices.  相似文献   

17.
Light-induced chemically resolved electrical measurements (CREM) under controlled electrical conditions are used to study photovoltaic effects at selected regions in nanocrystalline CdSe-based films. The method, based on X-ray photoelectron spectroscopy (XPS), possesses unique capabilities for exploring charge trapping and charge transport mechanisms, combining spectrally filtered input signals with photocurrent detection and with a powerful, site-selective, photovoltage probe.  相似文献   

18.
Photodetection based on bis-(4-dimethylaminodithiobenzil)-Ni(II) (BDN), a representative and well-studied metal dithiolene that shows strong absorption in the near-infrared region of the electromagnetic spectrum, has been investigated. By adopting a metal/insulator/semiconductor/metal (MISM) structure, the peak photocurrent response to an oscillating light chain is increased by up to 50 times, compared to devices without an insulating layer. The transient form of the MISM photoresponse, while unsuitable for steady-state photodetection, can be used to detect periodic light signals of frequencies up to 1 MHz, and is thus applicable for optical communication. Further improvements have been realized by nanostructuring carbon black into the dithiolene layer, improving charge collection, and yielding detectivity of up to 1.6 × 10(11) Jones at wavelengths beyond the scope of silicon photodiodes. Such an architecture may allow the favorable absorption properties of other such metal dithiolenes to be harnessed, where their low charge carrier mobilities and short excitation lifetimes have previously limited their applicability to this field.  相似文献   

19.
We report the study and elucidate the origin of the photoconductivity of polyferrocenylsilanes achieved through photooxidation performed by ultraviolet irradiation in the presence of chloroform. The persistence over months of the changes in the optoelectronic properties allowed more detailed studies of the charge photogeneration process. The photocurrent spectrum mimics that of the absorption indicating that the photooxidized material is not a mechanical mixture of oxidized and unoxidized polymer units. Photomodulation spectroscopy revealed the existence of long-lived photoexcited states with a lifetime in the millisecond range. They have been interpreted as trapped excitons at the oxidized sites where the polymer is deformed due to the presence of the chloroform derived counter ions. Because of the relatively long lifetime of the trapped excitons they can dissociate and the formed charge carriers can be separated in an externally applied electric field. The effect of the polymer chain deformation around the oxidized unit extends over the neighboring polymer units. In light of the potential applications of this class of polymers in various electronic and photonic devices, the clarification of such a basic process as the photocurrent generation will be a key factor for further technological development.  相似文献   

20.
This paper describes a study of the generation and flow of photocurrent through junctions containing three-dimensional arrays of colloidal CdSe quantum dots (QDs) of either a single size or multiple sizes. The electrodes were indium tin oxide (ITO) covered with a thin layer of poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) and a eutectic alloy of Ga and In (EGaIn). We measured the current-voltage characteristics of the junctions in the dark and under illumination, with various sources and wavelengths of excitation, and their photocurrent action spectra. Size-selective photoexcitation of the arrays of multiple sizes of QDs helped to determine (i) the location of the interface at which photoinduced separation of charge occurred, (ii) whether the energy absorbed by the QDs was redistributed before separation of charge, and (iii) the dependence of the photovoltage on the locations of various sizes of QDs within the junction. This research is a step toward the use of QDs for harvesting light and for transporting energy and charge in devices-for example, solar cells and photodetectors-that operate at zero bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号