首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A detailed thermal analysis of iron and cobalt surfactant complexes of the type [M(CH3COO)4]2?[C12H25NH3 +]2 has been carried out using Thermogravimetric (TG) analysis at different heating rates (i.e., 5, 10, 15, and 20 °C min?1). It has been observed that iron complex decomposes by a different mechanism compared to other transition metal complexes. Metal is the final product instead of metal oxide. Combining the results from our previous study, first row transition metal complexes exhibit an order of stability in agreement with the famous Irving Williams series, i.e., the apparent activation energy, E for thermal decomposition varies as: E Fe > E Co < E Ni < E Cu > E Zn (exception being iron because of different decomposition mechanism). Thermal decomposition parameters have been measured and compared using the multiple heating rate method of Flynn–Wall–Ozawa. Further, molecular modeling calculations have been carried out to compare the experimental TG data with theoretical computations for the synthesized metal surfactant complexes. Minimum energy optimized structures for the complexes have been obtained using Gaussian software.  相似文献   

2.
Copper immersed in 1 N CaCl2 solution containing NH3 corrodes in the presence of oxygen with the formation of blue crystals of the compound 4 Cu(OH)2 · CaCl2 · 3.5 H2O. The unit cell is tetragonal with a = 9.392 Å, c = 15.077 Å, c/a = 1.605; Z = 4. The calculated density is 2.818 g cm?3 and the observed density 2.80 g cm?3 at 22°C. The crystallographic aspect is P42**. Heating up to 400°C results in stepwise decomposition without sharp separation of the steps. The first step (165°C) gives 4 Cu(OH)2 · CaCl2 · 0.5 H2O, tetragonal body centered, a = 9.342 Å, c = 7.533 Å, c/a = 0.8064. The second step (215°C) gives CuO + 2 Cu(OH)2 · CuO · CaCl2 · H2O, cubic primitive (pseudocubic?) a = 5.74 ± 0.017 Å and the third step (260°C): 4 CuO + CaCl2.The first and the third step rehydrate in air at ambient temperature, the first step to the original material and the 3rd step to CuO + 3 Cu(OH)2 · CaCl2 · H2O. This compound is hexagonal a = 6.663 Å, c = 5.815 Å, c/a = 0.8727.The decomposition process is characterized by pseudomorphosis. At least for the first decomposition step, a topotaxial relationship is assumed.Diffraction and infrared data of the different compounds are given.  相似文献   

3.
Although the reaction products are unstable at the reaction temperatures, at a heating rate of 2 deg·min?1 ammonium peroxo vanadate, (NH4)4V2O11, decomposes to (NH4)[VO (O2)2 (NH3)] (above 93°C); this in turn decomposes to (NH4) [VO3 (NH3)] (above 106°C) and then to ammonium metavanadate (above 145°C). On further heating vanadium pentoxide is formed above 320°C. The first decomposition reaction occurs in a single step and the Avrami-Erofeev equation withn=2 fits the decomposition data best. An activation energy of 148.8 kJ·mol?1 and a ln(A) value of 42.2 are calculated for this reaction by the isothermal analysis method. An average value of 144 kJ·mol?1 is calculated for the first decomposition reaction using the dynamic heating data and the transformation-degree dependence of temperature at different heating rates.  相似文献   

4.
The kinetics of the thermal decomposition of aqueous manganese nitrate solutions and anhydrous manganese nitrate in air were established from isothermal experiments. By heating the solution, first most of the water evaporates to a composition of equimolar amounts of water and manganese nitrate; this concentrated solution then decomposes to γ-Mn(NO2, NO2 and water, usually in two steps. The first step can be described best by the model [?ln(1 ? α)]12 = 8.9 × 1011 exp(?121000/RT)t, whereas the second step is described equally well by several models. The kinetic parameters of these models are quite similar, the average activation energy being 141 kJ mole?1.The decomposition of anhydrous Mn(NO3)2, which proceeds in a single step, can also be described with several similar models. In this case the average activation energy is about 92 kJ mole?1.  相似文献   

5.
The decomposition of η6-(2-lithiochlorobenzene)tricarbonylchromium(0) (I) was found to follow first order kinetics with kdec  5.1 x 10-3 min-1 at 0°C, the half life of I being 136 min at 0°C. While this dependence strongly suggests intermediacy of η6-(benzyne)tricarbonylchromium, trapping experiments were successful in only low yield.  相似文献   

6.
Thermal decomposition studies of 2,3,5-triphenyl tetrazolium halochromates have been carried out upto 1000°C at a linear heating rate of 10 deg·min?1. The complexes undergo two stage decomposition. First one corresponds to the redox decomposition of the complex along with the loss of a phenyl halide molecule and 3/2 mol of oxygen. While, the second step corresponds to the oxidation of the formazan type structure formed in the first step. The first step decomposition follows diffusion controlled reaction mechanism in a sphere governed by the equationg(α)=[1?(1?α)1/3]2. Activation energy and pre-exponential factors have been determined by Coats-Redfern model and Dixit-Ray model. Activation energy decreases as the electronegativity of the halide ion decreases.  相似文献   

7.
The decomposition of cis- and trans-K[Cr(C2O4)2](H2O)2] has been studied using differential scanning calorimetry. Dehydration occurs as the first step with activation energies being 27.5 and 13.9 mol?1, respectively, for the cis and trans complexes. After dehydration, continued heating results in loss of CO amd CO2. For the trans complex, an additional endothermic peak is seen and the mass loss indicated that CO has been lost in a single step. In both cases, the final product indicated by mass loss data is KCrO2.  相似文献   

8.
Tetraphenylarsonium halochromate (halo=fluoro, chloro and bromo) complexes are synthesised and characterised by spectral and thermal studies. The effect of ionic size and electronegativity of halide ions on the infrared spectra, X-ray emission spectra, activation energy of the first decomposition step and thermal stability of the complexes are investigated. The complexes possess tetragonal unit cell with a=b=12.93 Å and c=7.68 Å.These complexes decompose in two exothermic stages. Cleavage of one Ph-As bond to give triphenylarsine and reduction of Cr(VI) to Cr(III) occur simultaneously. First step mass loss corresponds to the loss of two phenyl halide molecules and 3/2 moles of oxygen. The overall kinetics of the first step is described by diffusion controlled reaction mechanism with a function g(α)=[1?(1?α)1/2]. The second step decomposition is due to the further degradation of triphenylarsine. The final product is Cr2O3.  相似文献   

9.
Nitroaminoguanidine (NAG) has been investigated as regards its thermal decomposition characteristics using simultaneous thermal analysis, infrared spectroscopy, X-ray diffraction and polarising microscopy. XRD studies show thatNAG crystal belongs to the tetragonal system. The crystal structure parameters are found to be:a=17.063±0.005Å,b=17.063±0.005Å,c=5.155±0.005Å andc/a axial ratio=0.302. Under non-isothermal conditions,NAG decomposed apparently in one stage with a loss in weight of 80%. But the thermal decomposition ofNAG in the solid phase under isothermal conditions proceeded through three stages. Both the first and the second stages obeyed theA-E (Avrami Erofee'v) equation forn=1. The 3rd stage is too slow and kinetics has not been attempted. The rate parameters for the first and second stages have been evaluated. Gaseous decomposition products detected using the IR gas cell are NH3, NO2, HCN, N2O, CO and CO2. High temperature IR studies indicate preferential deamination reaction initially indicating breaking of N?NH2 and C?NH2 bonds leading to NH2 radical formation. Addition of diphenylamine, a known chain inhibitor, decelerated the thermal decomposition, supporting a radical chain reaction.  相似文献   

10.
1,3,3-Trinitroazetidine (TNAZ) was synthesized using the alternative approach based on the transformation of 3-oximino-1-(p-toluenesulfonyl)azetidine in the reaction with nitric acid through intermediate pseudonitrol. The thermal decomposition of TNAZ in the gas phase, melt and m-dinitrobenzene solution in a wide concentration range (5–80%) was studied by manometry, volumetry, thermogravimetry, IR spectroscopy, and mass spectrometry. In the gas phase in the temperature range from 170 to 220°C the thermal decomposition proceeds according to the first-order kinetic law with the activation energy 40.5 kcal mol?1 and pre-exponential factor 1015.0 s?1. The major gaseous reaction products are N2, NO, NO2, CO2, H2O, and nitroacetaldehyde, and trace amounts of CO and HCN are formed. The rate-determining step of the process is the homolytic cleavage of the N-NO2 bond in the TNAZ molecule. In melt at 170–210 °C the thermal decomposition proceeds with the pronounced self-acceleration and the maximum reaction rates are observed at conversions 53.9–67.4%. The solid decomposition products accelerate the reaction. It is most likely that the autocatalysis of TNAZ decomposition in the liquid phase is due to the autocatalytic decomposition of 1-nitroso-3,3-dinitroazetidine, which is formed by the thermal decomposition of TNAZ. In m-dinitrobenzene TNAZ also decomposes with self-acceleration. The higher the concentration in the solution, the more pronounced the self-acceleration. Additives of picric acid moderately accelerate the thermal decomposition of TNAZ, whereas hexamethylenetetraamine additives exert a strong acceleration.  相似文献   

11.
The nickel phosphate octahydrate (Ni3(PO4)2·8H2O) was synthesized by a simple procedure and characterized by FTIR, TG/DTG/DTA, AAS, and XRD techniques. The morphologies of the title compound and its decomposition product were studied by the SEM method. The dehydration process of the synthesized hydrate occurred in one step over the temperature range of 120–250 °C, and the thermal decomposition product at 800 °C was found to be Ni3(PO4)2. The kinetic parameters (E and A) of this step were calculated using the Ozawa–Flynn–Wall and Kissinger–Akahira–Sunose methods. The iterative methods of both equations were carried out to determine the exact values of E, which confirm the single-step mechanism of the dehydration process. The non-isothermal kinetic method was used to determine the mechanism function of the dehydration, which indicates the contracting disk mechanism of R1 model as the most probable mechanism function and agrees well with the isothermal data. Besides, the isokinetic temperature value (T i) was calculated from the spectroscopic data. The thermodynamic functions of the activated complex (ΔS , ΔH , and ΔG ) of the dehydration process were calculated using the activated complex theory of Eyring. The kinetic parameters and thermodynamic functions of the activated complex for the dehydration process of Ni3(PO4)2·8H2O are reported for the first time.  相似文献   

12.
The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10?13 T ?0.163exp(?0.22/RT) cm3 molecule?1 s?1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.  相似文献   

13.
The tartrate monohydrates of Sm(III) and Tb(III), Sm2C12H12O18·H2O and Tb2C12H12O18·H2O, were prepared and characterized on the basis of their elemental analysis and IR spectral studies. The thermal decompositions of these compounds, studied by TG and DSC methods, were found to follow an almost uniform pattern. Decomposition occurs in four steps. The first step involves dehydration, accompanied by partial decomposition to the oxalate, followed by conversion to the carbonate. The ultimate product in each case is the oxide M2O3, whereM=Sm or Tb. Reflectance spectra of the terbium compound were recorded at various stages of decomposition. The kinetics of the first decomposition step was studied by the non-isothermal method. TG and DSC data for this step were analysed for the evaluation of various kinetic parameters. Reasonable values ofE, Z, andΔS + were obtained.α vs. T curves were drawn on the basis of the TG and DSC data. The results suggest that the mechanism involves random nucleation.  相似文献   

14.
In this study, the effect of addition Calcium carbonate (CaCO3) filler component on solid state thermal decomposition procedures of Polypropylene-Low Density Polyethylene (PP-LDPE; 90/10 wt%) blends involving different amounts (5, 10, 20 wt%) Calcium carbonate (CaCO3) was investigated using thermogravimetry in dynamic nitrogen atmosphere at different heating rates. An integral composite procedure involving the integral iso-conversional methods such as the Tang (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa (FWO), an integral method such as Coats-Redfern (CR) and master plots method were employed to determine the kinetic model and kinetic parameters of the decomposition processes under non-isothermal conditions. The Iso-conversional methods indicated that the thermal decomposition reaction should conform to single reaction model. The results of the integral composite procedures of TG data at various heating rates suggested that thermal processes of PP-LDPE-CaCO3 composites involving different amounts of CaCO3 filler component (5, 10, 20 wt%) followed a single step with approximate activation energies of 226.7, 248.9, and 252.0 kJ.mol? 1 according to the FWO method, respectively and those of 231.3, 240.1 and 243.0 kJ mol? 1 at 5°C min? 1 according to the Coats-Redfern method, the reaction mechanisms of all the composites was described from the master plots methods and are Pn model for composite C-1, Rn model for composites C-2 and C-3, respectively. It was found that the thermal stability, activation energy and thermal decomposition process changed by the increasing CaCO3 filler weight in composite structure.  相似文献   

15.
The melting temperature, melting enthalpy, and specific heat capacities (C p) of 5′-deoxy-5′-iodo-2′,3′-O-isopropylidene-5-fluorouridine (DIOIPF) were measured using DSC-60 Differential Scanning Calorimetry. The melting temperature and melting enthalpy were obtained to be 453.80 K and 33.22 J g?1, respectively. The relationship between the specific heat capacity and temperature was obtained to be C p/J g?1 K?1 = 2.0261 – 0.0096T + 2 × 10?5 T 2 at the temperature range from 320.15 to 430.15 K. The thermal decomposition process was studied by the TG–DTA analyzer. The results showed that the thermal decomposition temperature of DIOIPF was above 487.84 K, and the decomposition process can be divided into three stages: the first stage is the decomposition of impurities, the mass loss in the second stage may be the sublimation of iodine and thermal decomposition process of the side-group C4H2O2N2F, and the third stage may be the thermal decomposition process of both the groups –CH3 and –CH2OCH2–. The obtained thermodynamic basic data are helpful for exploiting new synthetic method, engineering design, and commercial process of DIOIPF.  相似文献   

16.
A novel metal organic framework [Co (BTC)1/3 (DMF) (HCOO)] n (CoMOF, BTC = 1,3,5-benzene tricarboxylate, DMF = N,N-dimethylformamide) has been synthesized solvothermally and characterized by single crystal X-ray diffraction, X-ray powder diffraction, and FT-IR spectra. The molar heat capacity of the compound was measured by modulated differential scanning calorimetry (MDSC) over the temperature range from 198 to 418 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated. Moreover, a four-step sequential thermal decomposition mechanism for the CoMOF was investigated through the thermogravimetry and mass spectrometer analysis (TG-DTG-MS) from 300 to 800 K. The apparent activation energy of the first decomposition step of the compound was calculated by the Kissinger method using experimental data of TG analysis.  相似文献   

17.
The non-isothermal experiments of limestone decomposition at multi-heating rates in O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. The limestone decomposition kinetic model function, kinetic parameters of apparent activation energy (E), and pre-exponential factor (A) were evaluated by Bagchi and Malek method. The results shown that in 20 % O2/80 % N2 atmosphere, the limestone decomposed slowly following the contracting sphere volume model controlled by boundary reaction (spherical symmetry) in two stages, and the E increased by about 50 kJ mol?1 in the second decomposition stage. But in 20 % O2/80 % CO2 atmosphere, the presence of high-concentration CO2 significantly inhibited the limestone decomposition, and made the decomposition process occur at high temperature with a rapid rate; the decomposition kinetics was divided into three stages, the first stage was an accelerated decomposition process following the Mampel Power law model with the exponential law equation, the second stage followed the nth order chemical reaction model as an αt deceleration process, and the third stage belonged to the random nucleation and nuclei growth model with the Avrami–Erofeev equation. And with the heating rate increasing, the reaction order n showed a slight rise tendency. The E was about 1,245 kJ mol?1 in 20 % O2/80 % CO2 atmosphere, but was only about 175 kJ mol?1 in 20 % O2/80 % N2 atmosphere. The E and A increased markedly in the O2/CO2 atmosphere.  相似文献   

18.
19.
The thermal decomposition characteristics and thermal sensitivity are key indicators for reflecting the thermal stability of explosives in storage and application. The thermal decompositions in different degrees are used to determine the dominant factor which controls the thermal stability of composite explosive. Four kinds of RDX-based aluminized explosives are marked as RA1, RA2, RA3, and RA4 with the Al content increasing from 10 to 40 mass%. The initial thermal decomposition behaviors were studied by DPTA and the complete thermal decompositions were studied by DSC and TG. The thermal sensitivities were characterized by 5-s explosion point. The effects of micron-sized Al particles and their contents on thermal decomposition were investigated. The evolved gas amount (V i) from DPTA test follows RA3 < RA4 < RA2 < RA1, indicating that RA3 has the best thermal stability at ambient storage conditions. However, according to TG and DSC tests, the characteristic temperatures of thermal decomposition (T p, T b, and T SADT), the thermodynamic parameters (?H e, ?S , and ?H ), the kinetic parameters (E a and A), and the 5-s explosion points all follow RA4 < RA3 < RA2 < RA1. The results indicate that the Al particles play different roles in the different degrees of thermal decomposition. In the initial decomposition, the Al particles have not been activated and are considered as inert materials that hinder the decomposition of explosive. In the complete decomposition, the Al particles catalyze the thermal decomposition, and such catalysis becomes more obvious as the Al content increases to a certain degree.  相似文献   

20.
Terpolymer (4-APOFA) has been synthesized using the monomer 4-acetylpyridine oxime, formaldehyde and acetophenone in 1:5:1 molar proportion. The structure of 4-APOFA terpolymer has been elucidated based on various physicochemical techniques, i.e., FT-IR, 1H NMR, Pyrolyis GC/MS and viscosity average molecular weight. The glass transition temperature (Tg) and thermal stability of terpolymer have been determined by DSC. The activation energy of the thermal reaction has been determined with differential scanning calorimetry using Kissinger method. The apparent activation energies (Ea) of each step during thermodegradation have been determined using Flynn-Wall-Ozawa method. The type of solid-state mechanism has been established by Craido method. From the calculation, the solid-state thermal mechanism is proposed to be D3 (three-dimensional diffusion) at initial decomposition state and F1 (random nucleation with one nucleus on the individual particle) at second decomposition state for 4-APOFA. It has also been shown to possess excellent antimicrobial activities as compared to other cationic resins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号