首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Broadband two-dimensional electronic spectroscopy (2DES) can assist in understanding complex electronic and vibrational signatures. In this paper, we use 2DES to examine the electronic structure and dynamics of a long chain cyanine dye (1,1-diethyl-4,4-dicarbocyanine iodide, or DDCI-4), a system with a vibrational progression. Using broadband pulses that span the resonant electronic transition, we measure two-dimensional spectra that show a characteristic six peak pattern from coherently excited ground and excited state vibrational modes. We model these features using a spectral density formalism and the vibronic features are assigned to Feynman pathways. We also examine the dynamics of a particular set of peaks demonstrating anticorrelated peak motion, a signature of oscillatory wavepacket dynamics on the ground and excited states. These dynamics, in concert with the general structure of vibronic two-dimensional spectra, can be used to distinguish between pure electronic and vibrational quantum coherences.  相似文献   

2.
In 2D electronic spectroscopy studies, long‐lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic‐vibrational quantum mixtures, the impact of protein‐induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck‐Condon active vibrational modes in the resonant condition [Fujihashi et al., J. Chem. Phys.­ 2015 , 142, 212403.]. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter‐pigment electronic coupling. In this study, we explore the impact of the fluctuations on electronic‐vibrational quantum mixtures in a strongly coupled dimer with an off‐resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna‐Matthews‐Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein‐induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang‐Rhys factor of the vibrational mode is small. The electronic‐vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long‐lived quantum beating in the 2D spectra.  相似文献   

3.
The effect of conformational relaxation on the quantum dynamics of the hydrogen exchange tunneling is studied in the D2h subspace of formic acid dimer. The fully coupled quantum dynamics in up to six dimensions are derived for potential energy hypersurfaces interpolated directly from hybrid density functional calculations with and without geometry relaxation. For a calculated electronic barrier height of 35.0 kJ/mol the vibrational ground state shows a tunneling splitting of 0.0013 cm(-1). The results support the vibrational assignment of Madeja and Havenith [J. Chem. Phys. 2002, 117, 7162-7168]. Fully coupled ro-vibrational calculations demonstrate the compatibility of experimentally observed inertia defects with in-plane hydrogen exchange tunneling dynamics in formic acid dimer.  相似文献   

4.
By using the sensitized phosphorescence spectroscopy, the intensity of the phosphorescence has been recorded upon excitation of the benzonitrile dimer to the S1 vibronic states in a free jet. The results indicate that the strong vibrational energy dependence of the fluorescence quantum yield, reported previously, is attributable to the increasing rate of intersystem crossing with increasing vibrational energy. Similar behavior is also observed in other van der Waals complexes of benzonitrile though the increase is less obvious. The enhancement of the intersystem crossing can be correlated with the state density of van der Waals modes in the S1 electronic state. In case of the benzonitrile trimer and benzonitrile-Kr complex, intersystem crossing is found to be fully efficient even without vibrational excitation.  相似文献   

5.
Two-dimensional infrared spectroscopy is capable of following the transfer of vibrational energy between modes in real time. We develop a method to include vibrational relaxation in simulations of two-dimensional infrared spectra at finite temperature. The method takes into account the correlated fluctuations that occur in the frequencies of the vibrational states and in the coupling between them as a result of interaction with the environment. The fluctuations influence the two-dimensional infrared line shape and cause vibrational relaxation during the waiting time, which is included using second-order perturbation theory. The method is demonstrated by applying it to the amide-I and amide-II modes in N-methylacetamide in heavy water. Stochastic information on the fluctuations is obtained from a molecular dynamics trajectory, which is converted to time dependent frequencies and couplings with a map from a density functional calculation. Solvent dynamics with the same frequency as the energy gap between the two amide modes lead to efficient relaxation between amide-I and amide-II on a 560 fs time scale. We show that the cross peak intensity in the two-dimensional infrared spectrum provides a good measure for the vibrational relaxation.  相似文献   

6.
We present a theoretical study of the structure and dynamics of water-vapor interface by means of ab initio molecular dynamics simulations. The inhomogeneous density, hydrogen bond and orientational profiles, voids and vibrational frequency distributions are investigated. We have also studied various dynamical properties of the interface such as diffusion, orientational relaxation, hydrogen bond dynamics and vibrational frequency fluctuations. The diffusion and orientational relaxation of water molecules are found to be faster at the interface which can be correlated with the voids present in the system. The hydrogen bond dynamics, however, is found to be slightly slower at the interface than that in bulk water. The correlations of hydrogen bond relaxation with the dynamics of vibrational frequency fluctuations are also discussed.  相似文献   

7.
We present a multimode vibrational analysis of the gas-phase ultraviolet photoelectron spectra of the first ionization in anthracene, tetracene, and pentacene, using electron-vibration constants computed at the density functional theory level. The first ionization of each molecule exhibits a high-frequency vibronic structure; it is shown that this regularly spaced feature is actually the consequence of the collective action of several vibrational modes rather than the result of the interaction with a single mode. We interpret this feature in terms of the missing mode effect. We also discuss the vibronic coupling constants and relaxation energies obtained from the fit of the photoelectron spectra with the linear vibronic model.  相似文献   

8.
We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.  相似文献   

9.
The cumulant expansion is used to derive two formally different master equations for a two-level molecular system interacting with a bath, starting wit The two master equations reduce to the same form in the markovian limit for the bath (where its correlation time is much shorter than the relaxation pr A detailed comparison is made between the predictions of the two approaches which enables us to understand their range of validity and limitations. We apply the formalism to the vibrational relaxation and dephasing of a molecular impurity in a solid matrix and obtain a closed expression for the vib In contrast to the simple stochastic approaches we predict that the line shape in the non-markovian limit contains information regarding the interactio However, the fluctuations in the mean interaction energy of the two-level system with the bath, if correlated with the frequency modulation, result in  相似文献   

10.
Vibronic coupling, or electron-phonon coupling, of naphthalene is calculated. A method of vibronic coupling density analysis, which has been proposed for the vibronic coupling of the Jahn-Teller active modes in a Jahn-Teller molecule, is extended for totally symmetric vibrational modes of a molecule including a non-Jahn-Teller molecule. Contrary to non-totally-symmetric modes, orbital relaxation upon a charge transfer plays a crucial role in the vibronic coupling calculation for the totally symmetric modes. The method is applied for the ground state of the naphthalene anion to compare with that of the benzene anion. The relationship between the vibronic coupling density and a nuclear Fukui function is also discussed.  相似文献   

11.
In this paper, the vibronic structure of a dimer system is studied both theoretically and numerically. To construct adiabatic potential surfaces and electronic and vibrational wave functions for a dimer system, the adiabatic approximation is applied to two identical molecules, each of which has two electronic states with one vibrational mode. In this scheme, the excitonic splitting results not only from the electronic coupling of two molecules, but also from the vibronic coupling in each molecule. By using the resulting wavefunctions and the corresponding energies, the absorption and fluorescence spectra are studied. The effect of temperature on these spectra is also studied.  相似文献   

12.
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.  相似文献   

13.
We report a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anticorrelated fluctuations under a noncorrelated noise background. Using this new method, by changing and scanning the start time and end time along a pair of fluctuation trajectories, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anticorrelated, or noncorrelated; after which, a cross-correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis. We specifically discuss an application of this approach to analyze single-molecule fluorescence resonance energy transfer (FRET) fluctuation dynamics where the fluctuations are often complex, although this approach can be useful for analyzing other types of fluctuation dynamics of various physical variables as well.  相似文献   

14.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   

15.
When femto-second (fs) time-resolved experiments are used to study ultrafast processes, quantum beat phenomena are often observed. In this paper, to analyze the fs time-resolved spectra, we will present the density matrix method, a powerful theoretical technique, which describes the dynamics of population and coherence of the system. How to employ it to study the pump-probe experiments and fs ultrafast processes is described. The ππ*→nπ* transition of pyrazine is used as an example to demonstrate the application of the density matrix method. Recently, Suzuki’s group have employed the 22 fs time resolution laser to study the dynamics of the ππ* state of pyrazine. In this case, conical intersection is commonly believed to play an important role in this non-adiabatic process. How to treat the effect of conical intersection on non-adiabatic processes and fs time-resolved spectra is presented. Another important ultrafast process, vibrational relaxation, which takes place in sub-ps and ps range and has never been carefully studied, is treated in this paper. The vibrational relaxation in water dimer is chosen to demonstrate the calculation. It should be noted that the vibrational relaxation of (H2O)2 has not been experimentally studied but it can be accomplished by the pump-probe experiments.  相似文献   

16.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

17.
The A3Pi1u<--X1Sigmag+ photoacoustic spectrum of Br2 vapor has been studied and vibronic analysis performed using earlier data available for this system of bands from optical spectroscopy in the region 665-720 nm. The vibronic levels involved in these transitions are 4< or =v'< or =21 and 1< or =v'< or =4. The relative photoacoustic intensities of the vibronic bands have been used in estimating the non-radiative relaxation rate from vibrational levels of A3Pi(1u) state. The non-radiative relaxation is found to be a nonlinear function of the upper state vibrational quantum number. The radiative rate constants for the A3Pi(1u) state vibrational levels have been compared with the corresponding non-radiative constants obtained from present work. Non-radiative decay rate constants for the vibrational levels of A3Pi(1u) state have been experimentally determined for the first time from photoacoustic spectrum of Br2 vapor in the extreme red region.  相似文献   

18.
The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm(-1) range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface.  相似文献   

19.
The nuclear coordinate dependence of the electronic matrix elements for radiationless transitions (in the weak coupling limit) is investigated by the use of a Q-centroid approximation. This approach bears a similarity to the familiar r-centroid method in diatomic spectroscopy, but has a wholy different physical character. Because the Q-centroid for electronic relaxation is obtained as an average with density of states weighted Franck—Condon factors, it is not restricted to geometries near the equilibrium position of the initial electronic state as it is in the case of radiative transitions (in the weak coupling limit). For totally symmetric vibrations, it is shown that the Q-centroids for poor accepting modes are in the vicinity of the equilibrium positions for this vibration, while those for good accepting modes tend towards the surface crossing along those vibrational modes. Thus, in the case of dominant accepting modes, the electronic matrix element reflects a Teller surface crossing mechanism for electronic relaxation, even though the density of states weighted Franck—Condon factors reflect a tunnelling mechanism. For non-totally symmetric vibrations, Q-centroids may be large or small independent of their accepting mode capabilities. Thus, coupling mechanisms, which are “forbidden” at the equilibrium geometry in aromatic hydrocarbons, may become allowed and even dominant because of very distorted Q-centroid configurations. This leads to another possible reason for the absence of observation of a vibration that is clearly assignable as a promoting mode in the single vibronic level fluorescence studies of benzene-like molecules. The results underscore previous warnings as to the enormous errors incurred by using the Condon approximation for the nuclear coordinate dependent energy denominators that appear in the electronic matrix elements.  相似文献   

20.
Radiationless deactivation pathways of excited gas phase nucleobases were investigated using mass-selected femtosecond resolved pump-probe resonant ionization. By comparison between nucleobases and methylated species, in which tautomerism cannot occur, we can access intrinsic mechanisms at a time resolution never reported so far (80 fs). At this time resolution, and using appropriate substitution, real nuclear motion corresponding to active vibrational modes along deactivation coordinates can actually be probed. We provide evidence for the existence of a two-step decay mechanism, following a 267 nm excitation of the nucleobases. The time resolution achieved together with a careful zero time-delay calibration between lasers allow us to show that the first step does correspond to intrinsic dynamics rather than to a laser cross correlation. For adenine and 9-methyladenine a first decay component of about 100 fs has been measured. This first step is radically increased to 200 fs when the amino group hydrogen atoms of adenine are substituted by methyl groups. Our results could be rationalized according to the effect of the highly localized nature of the excitation combined to the presence of efficient deactivation pathway along both pyrimidine ring and amino group out-of-plane vibrational modes. These nuclear motions play a key role in the vibronic coupling between the initially excited pipi* and the dark npi* states. This seems to be the common mechanism that opens up the earlier phase of the internal conversion pathway which then, in consideration of the rather fast relaxation times observed, would probably proceed via conical intersection between the npi* relay state and high vibrational levels of the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号