首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study investigated which acoustic cues within the speech signal are responsible for bimodal speech perception benefit. Seven cochlear implant (CI) users with usable residual hearing at low frequencies in the non-implanted ear participated. Sentence tests were performed in near-quiet (some noise on the CI side to reduce scores from ceiling) and in a modulated noise background, with the implant alone and with the addition, in the hearing ear, of one of four types of acoustic signals derived from the same sentences: (1) a complex tone modulated by the fundamental frequency (F0) and amplitude envelope contours; (2) a pure tone modulated by the F0 and amplitude contours; (3) a noise-vocoded signal; (4) unprocessed speech. The modulated tones provided F0 information without spectral shape information, whilst the vocoded signal presented spectral shape information without F0 information. For the group as a whole, only the unprocessed speech condition provided significant benefit over implant-alone scores, in both near-quiet and noise. This suggests that, on average, F0 or spectral cues in isolation provided limited benefit for these subjects in the tested listening conditions, and that the significant benefit observed in the full-signal condition was derived from implantees' use of a combination of these cues.  相似文献   

2.
The corruption of intonation contours has detrimental effects on sentence-based speech recognition in normal-hearing listeners Binns and Culling [(2007). J. Acoust. Soc. Am. 122, 1765-1776]. This paper examines whether this finding also applies to cochlear implant (CI) recipients. The subjects' F0-discrimination and speech perception in the presence of noise were measured, using sentences with regular and inverted F0-contours. The results revealed that speech recognition for regular contours was significantly better than for inverted contours. This difference was related to the subjects' F0-discrimination providing further evidence that the perception of intonation patterns is important for the CI-mediated speech recognition in noise.  相似文献   

3.
Bilateral cochlear implant (BI-CI) recipients achieve high word recognition scores in quiet listening conditions. Still, there is a substantial drop in speech recognition performance when there is reverberation and more than one interferers. BI-CI users utilize information from just two directional microphones placed on opposite sides of the head in a so-called independent stimulation mode. To enhance the ability of BI-CI users to communicate in noise, the use of two computationally inexpensive multi-microphone adaptive noise reduction strategies exploiting information simultaneously collected by the microphones associated with two behind-the-ear (BTE) processors (one per ear) is proposed. To this end, as many as four microphones are employed (two omni-directional and two directional) in each of the two BTE processors (one per ear). In the proposed two-microphone binaural strategies, all four microphones (two behind each ear) are being used in a coordinated stimulation mode. The hypothesis is that such strategies combine spatial information from all microphones to form a better representation of the target than that made available with only a single input. Speech intelligibility is assessed in BI-CI listeners using IEEE sentences corrupted by up to three steady speech-shaped noise sources. Results indicate that multi-microphone strategies improve speech understanding in single- and multi-noise source scenarios.  相似文献   

4.
Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with the Advanced Bionics Clarion cochlear implant. Recognition was measured as a function of the number of spectral channels (noise bands or electrodes) at signal-to-noise ratios of + 15, + 10, +5, 0 dB, and in quiet. Performance with three different speech processing strategies (SPEAK, CIS, and SAS) was similar across all conditions, and improved as the number of electrodes increased (up to seven or eight) for all conditions. For all noise levels, vowel and consonant recognition with the SPEAK speech processor did not improve with more than seven electrodes, while for normal-hearing listeners, performance continued to increase up to at least 20 channels. Speech recognition on more difficult speech materials (word and sentence recognition) showed a marginally significant increase in Nucleus-22 listeners from seven to ten electrodes. The average implant score on all processing strategies was poorer than scores of NH listeners with similar processing. However, the best CI scores were similar to the normal-hearing scores for that condition (up to seven channels). CI listeners with the highest performance level increased in performance as the number of electrodes increased up to seven, while CI listeners with low levels of speech recognition did not increase in performance as the number of electrodes was increased beyond four. These results quantify the effect of number of spectral channels on speech recognition in noise and demonstrate that most CI subjects are not able to fully utilize the spectral information provided by the number of electrodes used in their implant.  相似文献   

5.
The speech perception of two multiple-channel cochlear implant patients was compared with that of three normally hearing listeners using an acoustic model of the implant for 22 different speech tests. The tests used included a minimal auditory capabilities battery, both closed-set and open-set word and sentence tests, speech tracking and a 12-consonant confusion study using nonsense syllables. The acoustic model represented electrical current pulses by bursts of noise and the effects of different electrodes were represented by using bandpass filters with different center frequencies. All subjects used a speech processor that coded the fundamental voicing frequency of speech as a pulse rate and the second formant frequency of speech as the electrode position in the cochlea, or the center frequency of the bandpass filter. Very good agreement was found for the two groups of subjects, indicating that the acoustic model is a useful tool for the development and evaluation of alternative cochlear implant speech processing strategies.  相似文献   

6.
Currently there are few standardized speech testing materials for Mandarin-speaking cochlear implant (CI) listeners. In this study, Mandarin speech perception (MSP) sentence test materials were developed and validated in normal-hearing subjects listening to acoustic simulations of CI processing. Percent distribution of vowels, consonants, and tones within each MSP sentence list was similar to that observed across commonly used Chinese characters. There was no significant difference in sentence recognition across sentence lists. Given the phonetic balancing within lists and the validation with spectrally degraded speech, the present MSP test materials may be useful for assessing speech performance of Mandarin-speaking CI listeners.  相似文献   

7.
Chinese sentence recognition strongly relates to the reception of tonal information. For cochlear implant (CI) users with residual acoustic hearing, tonal information may be enhanced by restoring low-frequency acoustic cues in the nonimplanted ear. The present study investigated the contribution of low-frequency acoustic information to Chinese speech recognition in Mandarin-speaking normal-hearing subjects listening to acoustic simulations of bilaterally combined electric and acoustic hearing. Subjects listened to a 6-channel CI simulation in one ear and low-pass filtered speech in the other ear. Chinese tone, phoneme, and sentence recognition were measured in steady-state, speech-shaped noise, as a function of the cutoff frequency for low-pass filtered speech. Results showed that low-frequency acoustic information below 500 Hz contributed most strongly to tone recognition, while low-frequency acoustic information above 500 Hz contributed most strongly to phoneme recognition. For Chinese sentences, speech reception thresholds (SRTs) improved with increasing amounts of low-frequency acoustic information, and significantly improved when low-frequency acoustic information above 500 Hz was preserved. SRTs were not significantly affected by the degree of spectral overlap between the CI simulation and low-pass filtered speech. These results suggest that, for CI patients with residual acoustic hearing, preserving low-frequency acoustic information can improve Chinese speech recognition in noise.  相似文献   

8.
This study examined the ability of cochlear implant users and normal-hearing subjects to perform auditory stream segregation of pure tones. An adaptive, rhythmic discrimination task was used to assess stream segregation as a function of frequency separation of the tones. The results for normal-hearing subjects were consistent with previously published observations (L.P.A.S van Noorden, Ph.D. dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands 1975), suggesting that auditory stream segregation increases with increasing frequency separation. For cochlear implant users, there appeared to be a range of pure-tone streaming abilities, with some subjects demonstrating streaming comparable to that of normal-hearing individuals, and others possessing much poorer streaming abilities. The variability in pure-tone streaming of cochlear implant users was correlated with speech perception in both steady-state noise and multi-talker babble. Moderate, statistically significant correlations between streaming and both measures of speech perception in noise were observed, with better stream segregation associated with better understanding of speech in noise. These results suggest that auditory stream segregation is a contributing factor in the ability to understand speech in background noise. The inability of some cochlear implant users to perform stream segregation may therefore contribute to their difficulties in noise backgrounds.  相似文献   

9.
Two experiments investigated the impact of reverberation and masking on speech understanding using cochlear implant (CI) simulations. Experiment 1 tested sentence recognition in quiet. Stimuli were processed with reverberation simulation (T=0.425, 0.266, 0.152, and 0.0 s) and then either processed with vocoding (6, 12, or 24 channels) or were subjected to no further processing. Reverberation alone had only a small impact on perception when as few as 12 channels of information were available. However, when the processing was limited to 6 channels, perception was extremely vulnerable to the effects of reverberation. In experiment 2, subjects listened to reverberated sentences, through 6- and 12-channel processors, in the presence of either speech-spectrum noise (SSN) or two-talker babble (TTB) at various target-to-masker ratios. The combined impact of reverberation and masking was profound, although there was no interaction between the two effects. This differs from results obtained in subjects listening to unprocessed speech where interactions between reverberation and masking have been shown to exist. A speech transmission index (STI) analysis indicated a reasonably good prediction of speech recognition performance. Unlike previous investigations, the SSN and TTB maskers produced equivalent results, raising questions about the role of informational masking in CI processed speech.  相似文献   

10.
Cochlear implants allow most patients with profound deafness to successfully communicate under optimal listening conditions. However, the amplitude modulation (AM) information provided by most implants is not sufficient for speech recognition in realistic settings where noise is typically present. This study added slowly varying frequency modulation (FM) to the existing algorithm of an implant simulation and used competing sentences to evaluate FM contributions to speech recognition in noise. Potential FM advantage was evaluated as a function of the number of spectral bands, FM depth, FM rate, and FM band distribution. Barring floor and ceiling effects, significant improvement was observed for all bands from 1 to 32 with the additional FM cue both in quiet and noise. Performance also improved with greater FM depth and rate, which might reflect resolved sidebands under the FM condition. Having FM present in low-frequency bands was more beneficial than in high-frequency bands, and only half of the bands required the presence of FM, regardless of position, to achieve performance similar to when all bands had the FM cue. These results provide insight into the relative contributions of AM and FM to speech communication and the potential advantage of incorporating FM for cochlear implant signal processing.  相似文献   

11.
Speech recognition performance was measured in normal-hearing and cochlear-implant listeners with maskers consisting of either steady-state speech-spectrum-shaped noise or a competing sentence. Target sentences from a male talker were presented in the presence of one of three competing talkers (same male, different male, or female) or speech-spectrum-shaped noise generated from this talker at several target-to-masker ratios. For the normal-hearing listeners, target-masker combinations were processed through a noise-excited vocoder designed to simulate a cochlear implant. With unprocessed stimuli, a normal-hearing control group maintained high levels of intelligibility down to target-to-masker ratios as low as 0 dB and showed a release from masking, producing better performance with single-talker maskers than with steady-state noise. In contrast, no masking release was observed in either implant or normal-hearing subjects listening through an implant simulation. The performance of the simulation and implant groups did not improve when the single-talker masker was a different talker compared to the same talker as the target speech, as was found in the normal-hearing control. These results are interpreted as evidence for a significant role of informational masking and modulation interference in cochlear implant speech recognition with fluctuating maskers. This informational masking may originate from increased target-masker similarity when spectral resolution is reduced.  相似文献   

12.
Speech perception in the presence of another competing voice is one of the most challenging tasks for cochlear implant users. Several studies have shown that (1) the fundamental frequency (F0) is a useful cue for segregating competing speech sounds and (2) the F0 is better represented by the temporal fine structure than by the temporal envelope. However, current cochlear implant speech processing algorithms emphasize temporal envelope information and discard the temporal fine structure. In this study, speech recognition was measured as a function of the F0 separation of the target and competing sentence in normal-hearing and cochlear implant listeners. For the normal-hearing listeners, the combined sentences were processed through either a standard implant simulation or a new algorithm which additionally extracts a slowed-down version of the temporal fine structure (called Frequency-Amplitude-Modulation-Encoding). The results showed no benefit of increasing F0 separation for the cochlear implant or simulation groups. In contrast, the new algorithm resulted in gradual improvements with increasing F0 separation, similar to that found with unprocessed sentences. These results emphasize the importance of temporal fine structure for speech perception and demonstrate a potential remedy for difficulty in the perceptual segregation of competing speech sounds.  相似文献   

13.
Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance CI performance in noise and whether Speech Transmission Index (STI) can be used to predict CI performance in various acoustic and signal processing conditions. In Experiment I, CI users listened to speech in noise processed by 4 hearing aid settings: omni-directional microphone, omni-directional microphone plus noise reduction, directional microphone, and directional microphone plus noise reduction. The directional microphone significantly improved speech recognition in noise. Both directional microphone and noise reduction algorithm improved overall preference. In Experiment II, normal hearing individuals listened to the recorded speech produced by 4- or 8-channel CI simulations. The 8-channel simulation yielded similar speech recognition results as in Experiment I, whereas the 4-channel simulation produced no significant difference among the 4 settings. In Experiment III, we examined the relationship between STIs and speech recognition. The results suggested that STI could predict actual and simulated CI speech intelligibility with acoustic degradation and the directional microphone, but not the noise reduction algorithm. Implications for intelligibility enhancement are discussed.  相似文献   

14.
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.  相似文献   

15.
This study examined whether cochlear implant users must perceive differences along phonetic continua in the same way as do normal hearing listeners (i.e., sharp identification functions, poor within-category sensitivity, high between-category sensitivity) in order to recognize speech accurately. Adult postlingually deafened cochlear implant users, who were heterogeneous in terms of their implants and processing strategies, were tested on two phonetic perception tasks using a synthetic /da/-/ta/ continuum (phoneme identification and discrimination) and two speech recognition tasks using natural recordings from ten talkers (open-set word recognition and forced-choice /d/-/t/ recognition). Cochlear implant users tended to have identification boundaries and sensitivity peaks at voice onset times (VOT) that were longer than found for normal-hearing individuals. Sensitivity peak locations were significantly correlated with individual differences in cochlear implant performance; individuals who had a /d/-/t/ sensitivity peak near normal-hearing peak locations were most accurate at recognizing natural recordings of words and syllables. However, speech recognition was not strongly related to identification boundary locations or to overall levels of discrimination performance. The results suggest that perceptual sensitivity affects speech recognition accuracy, but that many cochlear implant users are able to accurately recognize speech without having typical normal-hearing patterns of phonetic perception.  相似文献   

16.
Spectral resolution has been reported to be closely related to vowel and consonant recognition in cochlear implant (CI) listeners. One measure of spectral resolution is spectral modulation threshold (SMT), which is defined as the smallest detectable spectral contrast in the spectral ripple stimulus. SMT may be determined by the activation pattern associated with electrical stimulation. In the present study, broad activation patterns were simulated using a multi-band vocoder to determine if similar impairments in speech understanding scores could be produced in normal-hearing listeners. Tokens were first decomposed into 15 logarithmically spaced bands and then re-synthesized by multiplying the envelope of each band by matched filtered noise. Various amounts of current spread were simulated by adjusting the drop-off of the noise spectrum away from the peak (40-5 dBoctave). The average SMT (0.25 and 0.5 cyclesoctave) increased from 6.3 to 22.5 dB, while average vowel identification scores dropped from 86% to 19% and consonant identification scores dropped from 93% to 59%. In each condition, the impairments in speech understanding were generally similar to those found in CI listeners with similar SMTs, suggesting that variability in spread of neural activation largely accounts for the variability in speech perception of CI listeners.  相似文献   

17.
Speech acquisition by a cochlear implant (CI) is typically performed by a single omnidirectional microphone. In order to improve the signal-to-noise ratio (SNR) of sound collected from the forward direction, the delay beamforming method is applied to satisfy the size and processing limitations. The optimal delay time and weighting parameters, selected by our proposed graphical method, yielded a beam pattern that strongly enhanced speech from the front, while noise from lateral and rear directions were sharply weakened, making the method appropriate for use in CI applications.  相似文献   

18.
The comparison of measured binaural performance with the better of two monaural measures (one from each ear) may lead to underestimated binaural benefit due to statistical sampling bias that favors the monaural condition. The mathematical basis of such bias is reviewed and applied to speech reception thresholds measured in 32 bilateral cochlear implant (CI) users for coincident and spatially separated speech and noise. It is shown that the bias increases with test-retest variation and is maximal for uncorrelated samples of identical underlying performance in each ear. When measured differences between ears were assumed to reflect actual underlying performance differences, the bias averaged across the CI users was about 0.2 dB for coincident target and noise, and 0.1 dB for spatially separated conditions. An upper-bound estimate of the bias, based on the assumption that both ears have the same underlying performance and observed differences were due to test-retest variation, was about 0.7 dB regardless of noise location. To the extent that the test-retest variation in these data is comparable to other studies, the results indicate that binaural benefits in bilateral cochlear implant users are not substantially underestimated (on for average) when binaural performance is compared with the better ear in each listening configuration.  相似文献   

19.
系统地研究了人工耳蜗植入者的电刺激听觉部位音调感知,全面地探讨了部位音调感知与人工耳蜗植入者言语识别和音乐感知的关系。4位成人语后聋人工耳蜗植入者参与了该研究。通过电极音调排序测试度量植入者的部位音调感知能力。言语能力测试和音乐音高分辨测试分别用米考察植入者的言语识别和音乐感知能力。结果显示,随着电极刺激部位从蜗尖移向蜗底,所有受试者均可获得从"低"到"高"的音调感知变化,但个体差异较大。受试者的言语识别结果与其电刺激听觉部位音调感知能力相关,但受到天花板效应影响,对应关系并不明显。受试者的音乐音高分辨成绩与其电刺激听觉部位音调感知能力呈较好的对应关系。结果表明,当前人工耳蜗声音编码策略所传递的声信号特征已可使植入者获得良好的言语识别效果;且安静环境下言语识别对植入者的部位音调感知能力要求不高。但当前的声音编码策略并未能有效对音乐信号进行编码;植入者在理解音乐这类复杂声信号时,其电刺激听觉部位音调感知能力一定程度决定了其听音效果。   相似文献   

20.
The main goal of this study was to systematically investigate place-pitch perception in electrical hearing and the relative relationship between place-pitch perception ability,speech understanding and musical pitch discrimination by cochlear implant(CI) users.Electrode pitch ranking test was carried out to evaluate the place-pitch perception ability of CI users. Four post-lingually deafened CI users were recruited.They also participated in the speech recognition test and musical pitch discrimination test.Results showed that place pitch were generally ordered from apical to basal electrodes.The apical electrodes were judged lower in pitch than basal electrodes.Large individual difference was found.Comparing pitch and speech performance,the speech recognition result was related to the place-pitch perception ability of CI users,but this relationship was limited by the ceiling effects.However,a correlative relationship was found between musical pitch discrimination result and place-pitch ability of CI users.It indicated that the current signal processing of CI system can provide sufficient information for speech understanding but not for music perception of CI users.To a certain extent,music perception of CI users was determined by their place-pitch abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号