首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cumulative double bond (C[double bond]C[double bond]N), an important intermediate in synthetic organic chemistry, was successfully prepared via the selective attachment of acrylonitrile to Si(111)-7 x 7. The covalent binding of acrylonitrile on Si(111)-7 x 7 was studied using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM) and DFT calculations. The observation of the characteristic vibrational modes and electronic structures of the C[double bond]C[double bond]N group in the surface species demonstrates the [4 + 2]-like cycloaddition occurring between the terminal C and N atoms of acrylonitrile and the neighboring adatom-rest atom pair, consistent with the prediction of DFT calculations. STM studies further show the preferential binding of acrylonitrile on the center adatom sites of faulted halves of Si(111)-7 x 7 unit cells.  相似文献   

2.
Using infrared spectroscopy and low electron energy diffraction, we have investigated the adsorption of N(2), at 30 K, on the Pt(111) and the Pt(111)(1x1)H surfaces. At monolayer coverage, N(2) orders in commensurate (3x3) structures on both surfaces, and we propose that the unit cells contain four molecules in each case. The infrared spectra reveal that N(2) exclusively physisorbs on the Pt(111)(1x1)H surface, while both physisorbed and chemisorbed N(2) is detected on the Pt(111) surface. Physisorbed N(2) is the majority species in the latter case, and the two adsorption states show an almost identical uptake behavior, which indicates that they are intrinsic constituents of the growing (3x3) N(2) islands. An analysis of the infrared absorbance data, based on a simple scaling concept suggested by density functional theory calculations, supports a model in which the (3x3) unit cell contains one chemisorbed molecule in end-on atop configuration and three physisorbed molecules. We note that a classic "pinwheel" structure on a hexagonal lattice, with the end-on chemisorbed N(2) molecules acting as "pins," is compatible with this composition.  相似文献   

3.
The cumulative double bond (C=C=C), an important intermediate in synthetic organic chemistry, was successfully prepared via the selective attachment of acetylethyne to Si(111)-7 x 7. The experimental observation of the characteristic vibrational modes and electronic structures of the C=C=C group in the surface species demonstrates the [4 + 2]-like cycloaddition occurring between the terminal O and C atoms of acetylethyne and the neighboring Si adatom-rest atom pair, consistent with the prediction of density functional theory calculations. Scanning tunneling microscopy images further reveal that the molecules selectively bind to the adjacent adatom-rest atom pairs on Si(111)-7 x 7.  相似文献   

4.
An ideally (1x1)-CH(3)(methyl)-terminated Si(111) surface was composed by Grignard reaction of photochlorinated Si(111) and the surface structure was for the first time confirmed by Auger electron spectroscopy, low energy electron diffraction, high-resolution electron energy loss spectroscopy (HREELS), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). HREELS revealed the vibration modes associated to the CH(3)-group as well as the C-Si bond. STM discerned an adlattice with (1x1) periodicity on Si(111) composed of protrusions with internal features, covering all surface terraces. The surface structure was confirmed to be stable at temperatures below 600 K. STS showed that an occupied-state band exists at gap voltage of -1.57 eV, generated by the surface CH(3) adlattice. This CH(3):Si(111)-(1x1) adlayer with high stability and unique electronic property is prospective for applications such as nanoscale lithography and advanced electrochemistry.  相似文献   

5.
Evidence for the formation of various 2-D structures possessing different numbers of Co-Si magic clusters (size approximately 10.0 +/- 0.5 A), configurations and lifetimes are studied in real time on a Si(111)-(7 x 7) surface at elevated temperature in the STM. Observations of individual cluster diffusion, attachment and detachment dynamics resolve unequivocally the question of self assembly over surface reconstruction. The smallest stable structure consisting of seven individual Co-Si magic clusters arranged in a hexagonal closed packed formation (i = 7) is found to retain sufficient cohesive energy to avoid dissociation. A configuration dependent critical 2-D nuclei (i* = 6) is determined to exist in facilitating the self assembly dynamics.  相似文献   

6.
The adsorption of glycine and l-cysteine on Si(111)-7 x 7 was investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The observation of the characteristic vibrational modes and electronic structures of NH3+ and COO- groups for physisorbed glycine (l-cysteine) demonstrates the formation of zwitterionic species in multilayers. For chemisorbed molecules, the appearance of nu(Si-H), nu(Si-O), and nu(C=Omicron) and the absence of nu(O-H) clearly indicate that glycine and l-cysteine dissociate to produce monodentate carboxylate adducts on Si(111)-7 x 7. XPS results further verified the coexistence of two chemisorption states for each amino acid, corresponding to a Si-NH-CH2-COO-Si [Si-NHCH(CH2SH)COO-Si] species with new sigma-linkages of Si-N and Si-O, and a NH2-CH2-COO-Si [NH2CH(CH2SH)COO-Si] product through the cleavage of the O-H bond, respectively. Glycine/Si(111)-7 x 7 and l-cysteine/Si(111)-7 x 7 can be viewed as model systems for further modification of Si surfaces with biological molecules.  相似文献   

7.
We investigated the interactions between the Si(111) surface and the Na, Mg, and Al atoms using cluster model calculations. Calculations were performed at levels of complete-active-space self-consistent-field (CASSCF) and multi-reference singly and doubly excited configuration interaction (MRSDCI) calculations using the model core potential method. Our calculations revealed that the most favorable sites of Na, Mg, and Al adsorption on Si(111) are on top (T1), bridge (B2), and 3-fold filled (T4) sites, respectively. The nature of chemical bonds between these metal atoms and the dangling bonds of the surface Si atoms are found to be essentially covalent.  相似文献   

8.
The interactions of styrene and phenylacetylene and their isotope substitutions with a Si(111)-7 x 7 surface have been studied as model systems to mechanistically understand the chemical binding of conjugated pi-electron systems to di-radical-like silicon dangling bonds of the adjacent adatom-rest atom pair. Vibrational studies show that styrene mainly binds to the surface through a diradical reaction involving both the external C=C and its conjugated internal C=C of the phenyl ring with an adjacent adatom-rest atom pair, forming a 5-ethylidene-1,3-cyclohexadiene-like skeleton. On the other hand, phenylacetylene was shown to be covalently attached to Si(111)-7 x 7 through the external C[triple bond]C, forming a styrene-like conjugation system. These experimental results are consistent with density functional theory calculations. The different binding mechanisms for styrene and phenylacetylene clearly demonstrate that reaction channels for multifunctional organic molecules are strongly dependent on the chemical and physical properties of the functional groups. The resulting pi-electron conjugation structures may possibly be employed as intermediates for further organic syntheses and fabrication of multilayer organic films on semiconductor surfaces.  相似文献   

9.
The surface structure, strain energy, and charge profile of the methoxylated Si(111) surface, Si(111)-OCH3, has been studied using quantum mechanics, and the results are compared to those obtained previously for Si(111)-CH3 and Si(111)-C2H5. The calculations indicate that 100% coverage is feasible for Si(111)-OCH3 (similar to the methylated surface), as compared to only approximately 80% coverage for the ethylated surface. These differences can be understood in terms of nearest-neighbor steric and electrostatic interactions. Enthalpy and free energy calculations indicate that the formation of the Si(111)-OCH3 surface from Si(111)-H and methanol is favorable at 300 K. The calculations have also indicated the conditions under which stacking faults can emerge on Si(111)-OCH3, and such conditions are contrasted with the behavior of Si(111)-CH3 and Si(111)-CH2CH3 surfaces, for which stacking faults are calculated to be energetically feasible when etch pits with sufficiently long edges are present on the surface.  相似文献   

10.
As catalysis research strives toward designing structurally and functionally well-defined catalytic centers containing as few active metal atoms as possible, the importance of understanding the reactivity of small metal clusters, and in particular of systematic comparisons of reaction types and cluster sizes, has grown concomitantly. Here we report density functional theory calculations (GGA-PW91) that probe the relationship between particle size, intermediate structures, and energetics of CO and NO oxidation by molecular and atomic oxygen on Pt(x) clusters (x = 1-5 and 10). The preferred structures, charge distributions, vibrational spectra, and energetics are systematically examined for oxygen (O(2), 2O, and O), CO, CO(2), NO, and NO(2), for CO/NO co-adsorbed with O(2), 2O, and O, and for CO(2)/NO(2) co-adsorbed with O. The binding energies of oxygen, CO, NO, and of the oxidation products CO(2) and NO(2) are all markedly enhanced on Pt(x) compared to Pt(111), and they trend toward the Pt(111) levels as cluster size increases. Because of the strong interaction of both the reactants and products with the Pt(x) clusters, deep energy sinks develop on the potential energy surfaces of the respective oxidation processes, indicating worse reaction energetics than on Pt(111). Thus the smallest Pt clusters are less effective for catalyzing CO and NO oxidation in their original state than bulk Pt. Our results further suggests that oxidation by molecular O(2) is thermodynamically more favourable than by atomic O on Pt(x). Conditions and applications in which the Pt(x) clusters may be effective catalysts are discussed.  相似文献   

11.
We study the influence of germanium atoms upon molecular hydrogen desorption energetics using density functional cluster calculations. A three-dimer cluster is used to model the Si((1-x))Ge(x)(100)-(2x1) surface. The relative stabilities of the various monohydride and clean surface configurations are computed. We also compute the energy barriers for desorption from silicon, germanium, and mixed dimers with various neighboring configurations of silicon and germanium atoms. Our results indicate that there are two desorption channels from mixed dimers, one with an energy barrier close to that for desorption from germanium dimers and one with an energy barrier close to that for desorption from silicon dimers. Coupled with the preferential formation of mixed dimers over silicon or germanium dimers on the surface, our results suggest that the low barrier mixed dimer channel plays an important role in hydrogen desorption from silicon-germanium surfaces. A simple kinetics model is used to show that reasonable thermal desorption spectra result from incorporating this channel into the mechanism for hydrogen desorption. Our results help to resolve the discrepancy between the surface germanium coverage found from thermal desorption spectra analysis, and the results of composition measurements using photoemission experiments. We also find from our cluster calculations that germanium dimers exert little influence upon the hydrogen desorption barriers of neighboring silicon or germanium dimers. However, a relatively larger effect upon the desorption barrier is observed in our calculations when germanium atoms are present in the second layer.  相似文献   

12.
The cycloaddition chemistry of several representative unsaturated hydrocarbons (1,3-butadiene, benzene, ethylene, and acetylene) and a heterocyclic aromatic (thiophene) on a Si(111)-7x7 surface has been explored by means of density functional cluster model calculations. It is shown that (i) 1,3-butadiene, benzene, and thiophene can undergo both [4+2]-like and [2+2]-like cycloadditions onto a rest atom-adatom pair, with the former process being favored over the latter both thermodynamically and kinetically; (ii) ethylene and acetylene undergo [2+2] cycloaddition-like chemisorptions onto a rest atom-adatom pair; and (iii) all of these reactions adopt diradical mechanisms. This is in contrast to the [4+2] cycloaddition-like chemisorptions of conjugated dienes on a Si(100) surface and to the prototype [4+2] cycloadditions in organic chemistry, which were believed to adopt concerted reaction pathways. Of particular interest is the [4+2]-like cycloaddition of s-trans-1,3-butadiene, whose stereochemistry is retained during its chemisorption on the Si(111) surface.  相似文献   

13.
We experimentally demonstrated that pyridine/Si(111)-7 x 7 can act as an electron donor/acceptor pair as a result of the charge transfer from the electron-rich N atom of pyridine to the electron-deficient adatom of the Si surface, evidenced by the upshift of 1.8 eV (state A) for the N(1s) core level upon the formation of a datively bonded complex compared to physisorbed molecules. Another state (B) whose N(1s) binding energy downshifts by 1.2 eV was assigned to an adduct through Si-C and Si-N covalent linkages, formed via a [4 + 2]-like addition mechanism on Si(111)-7 x 7. Binding molecules through the formation of the dative bond resulted from significant electron transfer opens a new approach for the creation of Si-based molecular architectures and modification of semiconductor interfacial properties with unsaturated organic molecules.  相似文献   

14.
The chemisorption of tetracene on the Si(111)-7x7 surface was studied using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. On the basis of the STM results and dimension analysis, two types of binding configurations were proposed. One of the configurations involves the di-sigma reaction between two C atoms of an inner ring with an adatom-rest atom pair on the substrate to give rise to an unsymmetrical butterfly structure. Tetracene in another configuration possesses four C-Si bonds that are formed via di-sigma reactions between the C atoms at the terminal rings with two center adatom-rest atom pairs within one-half of the surface unit cell. Besides, two other binding modes were proposed based on the dimension compatibility between the tetracene C and the substrate Si dangling bonds even though their identifications through the STM images are nonexclusive. Structural modeling and adsorption energies calculations were carried out using the DFT method. Factors affecting the relative thermodynamic stabilities based on the calculation results and the relative populations of tetracene in the different binding configurations as observed experimentally were discussed.  相似文献   

15.
The authors have investigated the structure and energetics of the first hydration layer on NaCl(100) by means of density functional calculations. They have analyzed in detail the role of the hydrogen bond between the adsorbed molecules for the determination of the most favorable structures. They have shown that, using the water dimers as basic building blocks, very stable structures can be constructed. They discuss here two important examples: (i) a model with (1x1) periodicity at 2 ML coverage, and (ii) icelike bilayers with a c(4x2) unit cell at 1.5 ML. Both structures present high adsorption energies per water molecule of approximately 570 meV, in comparison to the 350 meV adsorption energy obtained for the previously studied (1x1) structures composed of weakly interacting monomers. Based on these findings, they propose an interpretation for the experimental observations of Toennies et al. [J. Chem. Phys. 120, 11347 (2004)], who found a transition of the periodicity of the first hydration layer on NaCl(100) from (1x1) to c(4x2) upon electron irradiation. According to the model, the transition would be driven by the partial desorption of (1x1) bilayer structures corresponding to a local coverage of 2 ML and the further rearrangement of the remaining water molecules to form a quasihexagonal structure with c(4x2) periodicity at coverage close to 1.5 ML.  相似文献   

16.
Understanding the electronic properties of silicon semiconductors is important for the preparation of high-performance semiconductor materials. We calculated the band entropies, electronic structures, and bonding properties of a silicon semiconductor using density functional theory and the binding-energy and bond-charge model. The relationship between Si energy and temperature was studied using the tight binding (TB) approximation and bond-order-length-strength (BOLS) theory (BOLS-TB), with the Si (111) surface as an example. The specific binding energies and bonding properties of Si atoms in different surface atomic layers are discussed by analyzing the X-ray photoelectron spectra of the Si (111) surface at 953 and 1493 K. This study improves our understanding of how surface properties reflect local bonding states and deepens our understanding of how atomic-relaxation-derived Hamiltonian perturbations and temperature influence the binding energy of the surface region. It also contributes to the development of Si-based semiconductor materials by providing new ideas and methods.  相似文献   

17.
The influence of molecular vibrations on the reaction dynamics of H2 on Si(001) as well as isotopic effects have been investigated by means of optical second-harmonic generation and molecular beam techniques. Enhanced dissociation of vibrationally excited H2 on Si(001)2 x 1 has been found corresponding to a reduction of the mean adsorption barrier to 390 meV and 180 meV for nu=1 and nu=2, respectively. The adsorption dynamics of the isotopes H2 and D2 show only small differences in the accessible range of beam energies between 50 meV and 350 meV. They are traced back to different degrees of vibrational excitation and do not point to an important influence of quantum tunneling in crossing the adsorption barrier. The sticking probability of H2 on the 7 x 7-reconstructed Si(111) surface was found to be activated both by H2 kinetic energy and surface temperature in a qualitatively similar fashion as H2/Si(001)2 x 1. Quantitatively, the overall sticking probabilities of H2 on the Si(111) surface are about one order of magnitude lower than on Si(001), the influence of surface temperature is generally stronger.  相似文献   

18.
We demonstrate that the strong N2 bond can be efficiently dissociated at low pressure and ambient temperature on a Si(111)-7x7 surface. The reaction was experimentally investigated by scanning tunnelling microscopy and X-ray photoemission spectroscopy. Experimental and density functional theory results suggest that relatively low thermal energy collision of N2 with the surface can facilitate electron transfer from the Si(111)-7x7 surface to the π*-antibonding orbitals of N2 that significantly weaken the N2 bond. This activated N2 triple bond dissociation on the surface leads to the formation of a Si3N interface.  相似文献   

19.
We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and 1.0 ML coverages using density functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption energy depends rather weakly on coverage. We predict that the observed coverage dependence of the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole interactions between adsorbed water molecules. When oxygen vacancies are introduced in various surface layers, water molecules are attracted more strongly to the surface. We find that it is very slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the evolution of H(2). In the event that water does not oxidize the surface, we predict that the effective attractive water-vacancy interaction will result in a significant enhancement of the vacancy concentration at the surface in agreement with experimental observations. Finally, we present our results in the context of recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface.  相似文献   

20.
Methyl-terminated, n-type, (111)-oriented Si surfaces were prepared via a two-step chlorination-alkylation method. This surface modification passivated the Si surface toward electrochemical oxidation and thereby allowed measurements of interfacial electron-transfer processes in contact with aqueous solutions. The resulting semiconductor/liquid junctions exhibited interfacial kinetics behavior in accord with the ideal model of a semiconductor/liquid junction. In contrast to the behavior of H-terminated Si(111) surfaces, current density vs. potential measurements of CH(3)-terminated Si(111) surfaces in contact with an electron acceptor having a pH-independent redox potential (methyl viologen(2+/+)) were used to verify that the band edges of the modified Si electrode were fixed with respect to changes in solution pH. The results provide strong evidence that the energetics of chemically modified Si interfaces can be fixed with respect to pH and show that the band-edge energies of Si can be tuned independently of pH-derived variations in the electrochemical potential of the solution redox species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号