首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Periodic traveling waves are numerically computed in a constant vorticity flow subject to the force of gravity. The Stokes wave problem is formulated via a conformal mapping as a nonlinear pseudodifferential equation, involving a periodic Hilbert transform for a strip, and solved by the Newton‐GMRES method. For strong positive vorticity, in the finite or infinite depth, overhanging profiles are found as the amplitude increases and tend to a touching wave, whose surface contacts itself at the trough line, enclosing an air bubble; numerical solutions become unphysical as the amplitude increases further and make a gap in the wave speed versus amplitude plane; another touching wave takes over and physical solutions follow along the fold in the wave speed versus amplitude plane until they ultimately tend to an extreme wave, which exhibits a corner at the crest. Touching waves connected to zero amplitude are found to approach the limiting Crapper wave as the strength of positive vorticity increases unboundedly, while touching waves connected to the extreme waves approach the rigid body rotation of a fluid disk.  相似文献   

2.
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

3.
4.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

5.
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

6.
7.
8.
It is found that two different celebrate models, the Korteweg de‐Vrise (KdV) equation and the Boussinesq equation, are linked to a same model equation but with different nonlocalities. The nonlocal KdV equation can be derived in two ways, via the so‐called consistent correlated bang companied by the parity and time reversal from the local KdV equation and via the parity and time reversal symmetry reduction from a coupled local KdV system which is a two‐layer fluid model. The same model can be called as the nonlocal Boussinesq system if the nonlocality is changed as only one of parity and time reversal. The nonlocal Boussinesq equation can be derived via the parity or time reversal symmetry reduction from the local Boussinesq equation. For the nonlocal Boussinesq equation, with help of the bilinear approach and recasting the multisoliton solutions of the usual Boussinesq equation to an equivalent novel form, the multisoliton solutions with even numbers and the head on interactions are obtained. However, the multisoliton solutions with odd numbers and the multisoliton solutions with even numbers but with pursuant interactions are prohibited. For the nonlocal KdV equation, the multisoliton solutions exhibit many more structures because an arbitrary odd function of can be introduced as background waves of the usual KdV equation.  相似文献   

9.
In A Treatise on Electricity and Magnetism, Maxwell determines the angles of intersection for which one may use Kelvin's inversion method to obtain the perturbed electric potential upon placing intersecting spherical conductors into a region with a known potential. There are numerous modern applications utilizing this geometric construction in potential theory and hydrodynamics, and generalized circle and sphere theorems play a foundational role in this area of mathematical physics. In his work, Maxwell gives an intuitive argument for obtaining the perturbed potential based on intersecting planar conductors and a spherical inversion, and in this paper we extend his ideas to a full proof using rotational transformations and reflections. In the process, we disprove results in [Proc Lond Math Soc., 1966:3(16)] and [Stud Appl Math., 2001:106(4); Z. Angew. Math. Mech., 2001:81(8)] on boundary value problems in hydrodynamics involving intersecting circles and spheres, and we detail the angles of intersection for which these theorems are viable. Moreover, our proof recovers a special case overlooked by Maxwell for which Kelvin's inversion method may be utilized to obtain full solutions.  相似文献   

10.
This paper illustrates how the singularity of the wave action flux causes the Kadomtsev‐Petviashvili (KP) equation to arise naturally from the modulation of a two‐phased wavetrain, causing the dispersion to emerge from the classical Whitham modulation theory. Interestingly, the coefficients of the resulting KP are shown to be related to the associated conservation of wave action for the original wavetrain, and therefore may be obtained prior to the modulation. This provides a universal form for the KP as a dispersive reduction from any Lagrangian with the appropriate wave action flux singularity. The theory is applied to the full water wave problem with two layers of stratification, illustrating how the KP equation arises from the modulation of a uniform flow state and how its coefficients may be extracted from the system.  相似文献   

11.
We study the stability of Stokes waves in an ideal fluid of infinite depth. The perturbations that are either coperiodic with a Stokes wave (superharmonics) or integer multiples of its period (subharmonics) are considered. The eigenvalue problem is formulated using the conformal canonical Hamiltonian variables and admits numerical solution in a matrix-free manner. We find that the operator matrix of the eigenvalue problem can be factored into a product of two operators: a self-adjoint operator and an operator inverted analytically. Moreover, the self-adjoint operator matrix is efficiently inverted by a Krylov-space-based method and enjoys spectral accuracy. Application of the operator matrix associated with the eigenvalue problem requires only O ( N log N ) $O(N\log N)$ flops, where N is the number of Fourier modes needed to resolve a Stokes wave. Additionally, due to the matrix-free approach, O ( N 2 ) $O(N^2)$ storage for the matrix of coefficients is no longer required. The new method is based on the shift-invert technique, and its application is illustrated in the classic examples of the Benjamin–Feir and the superharmonic instabilities. Simulations confirm numerical results of preceding works and recent theoretical work for the Benjamin–Feir instability (for small amplitude waves), and new results for large amplitude waves are shown.  相似文献   

12.
以浅水长波近似方程组为例,提出了拟小波方法求解(1 1)维非线性偏微分方程组数值解,该方程用拟小波离散格式离散空间导数,得到关于时间的常微分方程组,用四阶Runge-K utta方法离散时间导数,并将其拟小波解与解析解进行比较和验证.  相似文献   

13.
We give an explicit solution describing internal waves with a still-water surface, a situation akin to the well-known dead-water phenomenon, on the basis of the Gerstner wave solution to the Euler equations.  相似文献   

14.
Summary After a review of the existing state of affairs, an improvement is made in the stability theory for solitary-wave solutions of evolution equations of Korteweg-de Vries-type modelling the propagation of small-amplitude long waves. It is shown that the bulk of the solution emerging from initial data that is a small perturbation of an exact solitary wave travels at a speed close to that of the unperturbed solitary wave. This not unexpected result lends credibility to the presumption that the solution emanating from a perturbed solitary wave consists mainly of a nearby solitary wave. The result makes use of the existing stability theory together with certain small refinements, coupled with a new expression for the speed of propagation of the disturbance. The idea behind our result is also shown to be effective in the context of one-dimensional regularized long-wave equations and multidimensional nonlinear Schr?dinger equations.  相似文献   

15.
We present an exact solution for geophysical ocean waves in the Equatorial region which is three-dimensional, nonlinear, explicit in the Lagrangian formulation, and which incorporates a meridional current that is transverse Equatorial.  相似文献   

16.

Boundary integral methods to compute interfacial flows are very sensitive to numerical instabilities. A previous stability analysis by Beale, Hou and Lowengrub reveals that a very delicate balance among terms with singular integrals and derivatives must be preserved at the discrete level in order to maintain numerical stability. Such balance can be preserved by applying suitable numerical filtering at certain places of the discretization. While this filtering technique is effective for two-dimensional (2-D) periodic fluid interfaces, it does not apply to nonperiodic fluid interfaces. Moreover, using the filtering technique alone does not seem to be sufficient to stabilize 3-D fluid interfaces.

Here we introduce a new stabilizing technique for boundary integral methods for water waves which applies to nonperiodic and 3-D interfaces. A stabilizing term is added to the boundary integral method which exactly cancels the destabilizing term produced by the point vortex method approximation to the leading order. This modified boundary integral method still has the same order of accuracy as the point vortex method. A detailed stability analysis is presented for the point vortex method for 2-D water waves. The effect of various stabilizing terms is illustrated through careful numerical experiments.

  相似文献   


17.
We consider a two‐dimensional inviscid irrotational flow in a two layer fluid under the effects of gravity and interfacial tension. The upper fluid is bounded above by a rigid lid, and the lower fluid is bounded below by a rigid bottom. We use a spatial dynamics approach and formulate the steady Euler equations as a Hamiltonian system, where we consider the unbounded horizontal coordinate x as a time‐like coordinate. The linearization of the Hamiltonian system is studied, and bifurcation curves in the (β,α)‐plane are obtained, where α and β are two parameters. The curves depend on two additional parameters ρ and h, where ρ is the ratio of the densities and h is the ratio of the fluid depths. However, the bifurcation diagram is found to be qualitatively the same as for surface waves. In particular, we find that a Hamiltonian‐Hopf bifurcation, Hamiltonian real 1:1 resonance, and a Hamiltonian 02‐resonance occur for certain values of (β,α). Of particular interest are solitary wave solutions of the Euler equations. Such solutions correspond to homoclinic solutions of the Hamiltonian system. We investigate the parameter regimes where the Hamiltonian‐Hopf bifurcation and the Hamiltonian real 1:1 resonance occur. In both these cases, we perform a center manifold reduction of the Hamiltonian system and show that homoclinic solutions of the reduced system exist. In contrast to the case of surface waves, we find parameter values ρ and h for which the leading order nonlinear term in the reduced system vanishes. We make a detailed analysis of this phenomenon in the case of the real 1:1 resonance. We also briefly consider the Hamiltonian 02‐resonance and recover the results found by Kirrmann. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We consider here the 1D Green-Naghdi equations that are commonly used in coastal oceanography to describe the propagation of large amplitude surface waves. We show that the solution of the Green-Naghdi equations can be constructed by a standard Picard iterative scheme so that there is no loss of regularity of the solution with respect to the initial condition.  相似文献   

19.
20.
We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schrödinger equations with defocusing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号