首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A steady longitudinal current in the nearshore can, in some conditions, support oscillations known as vorticity waves or shear waves. In this article, we consider a family of nonlinear evolution equations derived by Shrira and Voronovitch to describe the dynamics of vorticity waves near the coastal line and make the study of the dispersion and smoothing properties of the associated nonlocal free problems. More precisely, after establishing long and short time uniform estimates for a certain class of oscillatory integrals, we derive “L p ?L q ” and Strichartz-type estimates for the solutions of the linearized equations.  相似文献   

2.
In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.  相似文献   

3.
This paper is concerned with a priori C regularity for three-dimensional doubly periodic travelling gravity waves whose fundamental domain is a symmetric diamond. The existence of such waves was a long standing open problem solved recently by Iooss and Plotnikov. The main difficulty is that, unlike conventional free boundary problems, the reduced boundary system is not elliptic for three-dimensional pure gravity waves, which leads to small divisors problems. Our main result asserts that sufficiently smooth diamond waves which satisfy a Diophantine condition are automatically C . In particular, we prove that the solutions defined by Iooss and Plotnikov are C . Two notable technical aspects are that (i) no smallness condition is required and (ii) we obtain an exact paralinearization formula for the Dirichlet to Neumann operator.  相似文献   

4.
In the present paper, we construct exact solutions to a system of partial differential equations iux + v + u | v | 2 = 0, ivt + u + v | u | 2 = 0 related to the Thirring model. First, we introduce a transform of variables, which puts the governing equations into a more useful form. Because of symmetries inherent in the governing equations, we are able to successively obtain solutions for the phase of each nonlinear wave in terms of the amplitudes of both waves. The exact solutions can be described as belonging to two classes, namely, those that are essentially linear waves and those which are nonlinear waves. The linear wave solutions correspond to waves propagating with constant amplitude, whereas the nonlinear waves evolve in space and time with variable amplitudes. In the traveling wave case, these nonlinear waves can take the form of solitons, or solitary waves, given appropriate initial conditions. Once the general solution method is outlined, we focus on a number of more specific examples in order to show the variety of physical solutions possible. We find that radiation naturally emerges in the solution method: if we assume one of u or v with zero background, the second wave will naturally include both a solitary wave and radiation terms. The solution method is rather elegant and can be applied to related partial differential systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
We study the asymptotic stability of planar waves for the Allen–Cahn equation on ? n , where n ≥ 2. Our first result states that planar waves are asymptotically stable under any—possibly large—initial perturbations that decay at space infinity. Our second result states that the planar waves are asymptotically stable under almost periodic perturbations. More precisely, the perturbed solution converges to a planar wave as t → ∞. The convergence is uniform in ? n . Lastly, the existence of a solution that oscillates permanently between two planar waves is shown, which implies that planar waves are not asymptotically stable under more general perturbations.  相似文献   

6.
In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n?2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations.  相似文献   

7.
Nowadays, breather solutions are generally accepted models of rogue waves. However, breathers exist on a finite background and therefore are not localized, while wavefields in nature can generally be considered as localized due to the limited sizes of physical domain. Hence, the theory of rogue waves needs to be supplemented with localized solutions, which evolve locally as breathers. In this paper, we present a universal method for constructing such solutions from exact multisoliton solutions, which consists in replacing the plane wave in the dressing construction of the breathers with a specific exact N-soliton solution converging asymptotically to the plane wave at large number of solitons N. On the example of the Peregrine, Akhmediev, Kuznetsov–Ma, and Tajiri–Watanabe breathers, we show that constructed with our method multisoliton solutions, being localized in space with characteristic width proportional to N, are practically indistinguishable from the breathers in a wide region of space and time at large N. Our method makes it possible to build solitonic models with the same dynamical properties for the higher order rational and super-regular breathers, and can be applied to general multibreather solutions, breathers on a nontrivial background (e.g., cnoidal waves), and other integrable systems. The constructed multisoliton solutions can also be generalized to capture the spontaneous emergence of rogue waves through the spontaneous synchronization of soliton norming constants, though finding these synchronization conditions represents a challenging problem for future studies.  相似文献   

8.
A two-dimensional hyperbolic system of nonlinear conservation laws is considered for any piecewise constant initial data having two discontinuity rays with the origin as vertex. One kind of new waves, which is labeled the Dirac-contact wave, appears in the solution. The entropy conditions for the Dirac-contact waves are given. The solutions on the Dirac-contact waves can be viewed as the bounded linear functionals onC 0 (R 2 ×R +). Supported by CNSF and a grant from Academia Sinica Author’s current address: CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France  相似文献   

9.
We consider the nonlinear Klein-Gordon equation in ? d . We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.  相似文献   

10.
Considering certain terms of the next asymptotic order beyond the nonlinear Schrödinger equation, the Fokas–Lenells (FL) equation governed by the FL system arises as a model for nonlinear pulse propagation in optical fibers. The expressions of the q[n] and r[n] in the FL system are generated by the n‐fold Darboux transformation (DT), each element of the matrix is a 2 × 2 matrix, expressed by a ratio of (2n + 1) × (2n + 1) determinant and 2n × 2n determinant of eigenfunctions. Further, a Taylor series expansion about the n‐order breather solutions q[n] generated using by DT and assuming periodic seed solutions under reduction can generate the n‐order rogue waves of the FL equation explicitly with 2n + 3 free parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In addition to the sine–cosine functions, sawtooth waves, square waves, triangular waves, trapezoidal waves, etc. are also easily generated periodic functions for modern electronics. Similar to Fourier analysis, a signal can be considered as a superposition of easily generated functions with different frequencies. In this letter, we discuss the change-of-bases formulas and consider the problem of convergence. Only the L2:=L2[−π,π] setting is presented.  相似文献   

12.
The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let A denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where |A| → ∞, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of −A and of arbitrarily small opening angle. Asymptotics of various physical quantities in |A|−1 is studied carefully. Our results are in qualitative agreement with experimental data reported in Eckle et al. (Science 322, 1525–1529; 2008, Nature (physics) 4, 565–570 2008).  相似文献   

13.
14.
We consider the nonlinear Schrödinger (NLS) equation posed on the box [0,L]d with periodic boundary conditions. The aim is to describe the long‐time dynamics by deriving effective equations for it when L is large and the characteristic size ɛ of the data is small. Such questions arise naturally when studying dispersive equations that are posed on large domains (like water waves in the ocean), and also in the theory of statistical physics of dispersive waves, which goes by the name of “wave turbulence.” Our main result is deriving a new equation, the continuous resonant (CR) equation, which describes the effective dynamics for large L and small ɛ over very large timescales. Such timescales are well beyond the (a) nonlinear timescale of the equation, and (b) the euclidean timescale at which the effective dynamics are given by (NLS) on ℝd. The proof relies heavily on tools from analytic number theory, such as a relatively modern version of the Hardy‐Littlewood circle method, which are modified and extended to be applicable in a PDE setting.© 2018 Wiley Periodicals, Inc.  相似文献   

15.
The Riemann–Silberstein–Majorana–Oppenheimer complex approach to the Maxwell electrodynamics is investigated within the matrix formalism. Within the squaring procedure we construct four types of formal solutions of the Maxwell equations on the base of scalar D’Alembert solutions. General problem of separating physical electromagnetic solutions in the linear space λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + λ3Ψ3 is investigated, the Maxwell equations reduce to a new form including parameters λ a . Several particular cases, plane waves and cylindrical waves, are considered in detail. Possible extension of the technique to a curved space–time models is discussed.  相似文献   

16.
The structure of solutions of gasdynamic equations is investigated in the case of unsteady double waves in the neighborhood of the quiescent region. A general concept of double waves is presented in the form of special series with logarithmic terms. Results of numerical computations are given.The problem of determining the flow of plane and three-dimensional waves separated from the quiescent region by a weak discontinuity was considered in [1–3], where approximate solutions were derived for that neighborhood, and the formulation of boundary value problems required for solving the equation for the analog of the velocity potential in the hodograph plane was investigated.The more general problem (without the assumption of the degeneration of motion) of arbitrary potential flows of polytropic gas adjacent to the quiescent region and separated by a weak discontinuity was considerd in [4–8]. Solution of that problem was obtained in the form of special series in powers of the mo dulus of the velocity vector r in the space of the time hodograph. The value r = 0 corresponds to the surface of weak discontinuity that separates the perturbed motion region from that at rest. Some applications of derived solutions to problems such as the motion of a convex piston and the propagation of weak shock waves were also investigated in those papers. Convergence in the small of obtained series was proved in [9]. However the attempts of constructing series in powers of r, which were used in [4–8] for the presentation of equations of double waves in the neighborhood of the quiescent region, proved to be unsuccessful.Although parts of expansions in series in powers of r (accurate to within 0 (r2)), were constructed in [1–3], it was found that the coefficient at r8 in equations for double waves cannot be determined owing to the insolvability of its equation. This is related to the fact that the surface r = 0in the case of equations for double waves is simultaneously a line of parabolic degeneration and a characteristic.The object of the present note is the formulation of solutions of equations for plane unsteady double waves in the neighborhood of the quiescent region. Parts of the derived series, which generally are nonanalytic functions of r, can be used for defining flows at small r in particular those downstream of two-dimensional normal detonation waves [10] or in problems of angular pistons [11]. The method used for the derivation of series can be also applied in investigations of threedimensional self-similar flows with variables x1/x3 and x2/x3 (steady flows) or x1/t, x2/t and x3/t (unsteady flows). However it was not possible to obtain in such cases regular series in powers of r.  相似文献   

17.
In this article, the investigation of a class of quantum optimal control problems with L1 sparsity cost functionals is presented. The focus is on quantum systems modeled by Schrödinger-type equations with a bilinear control structure as it appears in many applications in nuclear magnetic resonance spectroscopy, quantum imaging, quantum computing, and in chemical and photochemical processes. In these problems, the choice of L1 control spaces promotes sparse optimal control functions that are conveniently produced by laboratory pulse shapers. The characterization of L1 quantum optimal controls and an efficient numerical semi-smooth Newton solution procedure are discussed.  相似文献   

18.
The inviscid instability of O(ε) two-dimensional periodic flows to spanwiseperiodic longitudinal vortex modes in parallel O(1) shear flows of the form ū = ± |z|q is considered. Here the mean velocity ū is relative to the wave and q is a constant. Such shear flows admit neutral Rayleigh waves with amplitudes that either diminish or diverge with |αz|; both are considered. Of particular interest are streamwise α and spanwise l wavenumbers in the range l2 ? α2, α = O(1), as it is here that the most analytical progress can be made. A generalized Lagrangian-mean formulation is used to describe the effect of fluctuations upon the mean state and, because the developing mean flow acts to distort the waves, a further equation, the Rayleigh-Craik equation, is employed to complete the specification. It is shown that instability to longitudinal vortex form is likely for both classes of waves in many physically interesting situations, from simple mixing layers to atmospheric boundary layers over undulating surfaces.  相似文献   

19.
We derive a first-order rate of L1-convergence for stiff relaxation approximations to its equilibrium solutions, i.e., piecewise smooth entropy solutions with finitely many discontinuities for scalar, convex conservation laws. The piecewise smooth solutions include initial central rarefaction waves, initial shocks, possible spontaneous formation of shocks in a future time, and interactions of all these patterns. A rigorous analysis shows that the relaxation approximations to approach the piecewise smooth entropy solutions have L1-error bound of O(ε|log ε| + ε), where ε is the stiff relaxation coefficient. The first-order L1-convergence rate is an improvement on the error bound. If neither central rarefaction waves nor spontaneous shocks occur, the error bound is improved to O(ε). © 1998 John Wiley & Sons, Inc.  相似文献   

20.
We use some estimating of orthogonal projection in a reproducing kernel Hilbert space, to prove a sharp quantitaive form of Shapiro's mean dispersion theroem with generalized dispersion for the short time Fourier transform. Other forms of localization of orthonormal sequences in L2?d) notably the umbrella theorem, are also proved for the short time Fourier transform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号