首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sludges produced in huge amounts by wastewater treatment plants (WWTP) display high fertility properties; however, the presence of heavy metals restricts their use for agricultural purposes. Sorption capacity of sludge is generally much higher and it can also be considered as a cheap sorbent of heavy metals. The paper describes cobalt sorption by dried activated sludge (DAS) obtained from the aerobic phase of a WWTP. DAS was characterized by FT-IR spectroscopy, cation exchange capacity (CEC), and atomic absorption spectrometry (AAS) analysis. Sorption capacity of DAS (Q eq) increased with the initial concentration (C 0) of Co2+ (CoCl2) within the range from 100 μmol g?1 to 4000 μmol g?1, reaching 15 μmol g?1 and 200 μmol g?1, respectively. The maximum uptake capacity (Q max) at pH 6.0 calculated from the Langmuir isotherm model was (256 ± 9) μmol g?1 for Co2+ ions. Obtained Q values were dependent on pH within the range from 3.0 to 7.0. Competitive effect of other bivalent cations such as Ni2+ in Co2+ sorption equilibrium was confirmed; which is in agreement with the hypothesis of the decisive role of ion-exchange mechanism in metal sorption. The obtained data are discussed from the point of view of potential utilization of sludges as sorbents, i.e. in non-agricultural application.  相似文献   

2.
This paper is focused on a characterization of bacterial contamination in pool water of the interim spent fuel storage (JAVYS Inc.) in Slovak Republic and on bioaccumulation of 137Cs and 60Co by isolated bacteria. Bacterial community in pool water is kept on very low level by extremely low concentration of solutes in deionized water and by the efficient water filtration system. Based on standard methods and sequencing of 16S rDNA four pure bacterial cultures were identified as Kocuria palustris, Micrococcus luteus, Ochrobactrum spp. and Pseudomonas aeruginosa. Isolated aerobic bacteria were able to bioaccumulate 137Cs and 60Co in laboratory experiments. The mechanism of Co and Cs binding involve rapid interactions with anionic groups of the components of cell surface and in the case of Cs+ ions is followed by transport processes across cytoplasm membranes and by intracellular distribution. The maximum specific uptake of Cs+ after 48 h cultivation in mineral medium (MM) reached 7.54 ± 0.48 μmol g?1 dw (Ochrobactrum spp.), 19.6 ± 0.1 μmol g?1 dw (M. luteus) and 20.1 ± 2.2 μmol g?1 dw (K. palustris). The maximum specific uptake of Co2+ after 24 h cultivation in MM reached 31.1 ± 3.5 μmol g?1 dw (Ochrobactrum spp.), 86.6 ± 12.2 μmol g?1 dw (M. luteus) and 16.9 ± 1.2 μmol g?1 dw (K. palustris). These results suggest that due to the long lasting uptake of 137Cs, 60Co and other radionuclides by biofilm in pool water high specific radioactivities (Bq m?2) can be expected on stainless steel walls of pools.  相似文献   

3.
The sorption of nickel on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite samples used in experiments were a commercial hydroxyapatite and hydroxyapatite of high crystallinity with Ca/P ratio of 1.563 and 1.688, respectively, prepared by a wet precipitation process. The sorption of nickel on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The adsorption of nickel was rapid and the percentage of Ni sorption on both samples of hydroxyapatite was >98 % during the first 15–30 min of the contact time for initial Ni2+ concentration of 1 × 10?4 mol dm?3. The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.184 and 0.247 mmol g?1, respectively. The sorption of Ni2+ ions was performed by ion-exchange with Ca2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Co2+ and Fe2+ towards Ni2+ sorption was stronger than that of Ca2+ ions. NH4 + ions have no apparent effect on nickel sorption.  相似文献   

4.
Adsorption of the gadolinium from H2O and HCl solutions on the ion-exchange resin C100 is investigated. The experiments were carried out by varying the acidity of the liquid phase, the amount of sorbent, and the temperature. The maximal sorption of the ions Gd3+ is observed from the solution 0–0.2 M HCl under optimal conditions, the sorption reaches more than 99.5%. Sorption of Gd3+ on C100 from H2O solution occurs most intensively during the first 3 min then for 30 min the system smoothly comes to equilibrium. The maximal sorption capacity of the resin C100 amounted to 1.2 ± 0.1 mmol g?1. The thermodynamic parameters of sorption: ΔG = ? 24.20 kJ mol?1, ΔS = ? 90.27 J mol?1 K?1, ?H = ? 50.93 kJ mol?1 were evaluated. It is shown that the sorption of gadolinium on the ion-exchange resin C100 is described by models of kinetically pseudo-first and pseudo-second order. It is established that the Gd3+ sorption on the C100 resin is reversible second order chemical reaction.  相似文献   

5.
The sorption of nickel on chitosan was studied using batch method. As a tracer was used radioisotope 63Ni. The effect of pH and contact time to reach sorption equilibrium was investigated. During the sorption of Ni2+ ions occur mostly to ion-exchange reactions on the surface of sorbent. The time to reach the sorption equilibrium of nickel on chitosan was 14 h. The percentage of sorption after 14 h achieved the value of 84 %. On the sorption of nickel used solutions with initial pH in the range from 3.9 to 8.1. In the monitored range of pH after 24 h of contact was the sorption of nickel on chitosan >97 %. The sorption of nickel was reduced by increasing concentrations of Ni2+ ions in the solution. The experimental data for sorption of nickel have been interpreted in the term of Langmuir isotherm and the value of maximum sorption capacity of nickel on chitosan was 2.71 × 10?3 mol g?1.  相似文献   

6.
An inulinase-producing strain, Paenibacillus polymyxa ZJ-9, was isolated from natural sources to produce R,R-2,3-butanediol via one-step fermentation of raw inulin extracted from Jerusalem artichoke tubers. The inulinase gene from P. polymyxa ZJ-9 was cloned and overexpressed in Escherichia coli BL21 (DE3), and the purified recombinant inulinase was estimated to be approximately 56 kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and gel filtration chromatography. This result suggests that the active form of the inulinase is probably a monomer. Terminal hydrolysis fructose units from the inulin indicate that enzymes are exo-inulinase. The purified recombinant enzyme showed maximum activity at 25 °C and pH 6.0, which indicate its extreme suitability for industrial applications. Zn2+, Fe2+, and Mg2+ stimulated the activity of the purified enzyme, whereas Co2+, Cu2+, and Ni2+ inhibited enzyme activity. The K m and V max values for inulin hydrolysis were 1.72 mM and 21.69 μmol min?1 mg?1 protein, respectively. The same parameters toward sucrose were 41.09 mM and 78.7 μmol min?1 mg?1 protein, respectively. Considering its substrate specificity and other enzymatic characteristics, we believe that this inulinase gene from P. polymyxa ZJ-9 could be transformed into other special bacterial strains to allow inulin conversion to other biochemicals and bioenergy through one-step fermentation.  相似文献   

7.
The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 °C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q max) of IBC for As about more than 20 times (Q max BC 0.11 and Q max IBC 2.26 mg g?1). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q max BC 0.89 and Q max IBC 0.98 mg g?1). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.  相似文献   

8.
A graft copolymerization was performed using free radical initiating process to prepare the poly(methyl acrylate) grafted copolymer from the tapioca cellulose. The desired material is poly(hydroxamic acid) ligand, which is synthesized from poly(methyl acrylate) grafted cellulose using hydroximation reaction. The tapioca cellulose, grafted cellulose and poly(hydroxamic acid) ligand were characterized by Infrared Spectroscopy and Field Emission Scanning Electron Microscope. The adsorption capacity with copper was found to be good, 210 mg g?1 with a faster adsorption rate (t1/2 = 10.5 min). The adsorption capacities for other heavy metal ions were also found to be strong such as Fe3+, Cr3+, Co3+ and Ni2+ were 191, 182, 202 and 173 mg g?1, respectively at pH 6. To predict the adsorption behavior, the heavy metal ions sorption onto ligand were well-fitted with the Langmuir isotherm model (R2 > 0.99), which suggest that the cellulose-based adsorbent i.e., poly(hydroxamic acid) ligand surface is homogenous and monolayer. The reusability was checked by the sorption/desorption process for six cycles and the sorption and extraction efficiency in each cycle was determined. This new adsorbent can be reused in many cycles without any significant loss in its original removal performances.  相似文献   

9.
Molecular imprinting is a technology that facilitates the production of artificial receptors toward compounds of interest. In this study, we prepared a series of molecularly imprinted polymers (MIPs) by precipitation polymerization for the purpose of binding specifically to malachite green (MG). The presence of monomer–template solution complexes in non-covalent MIPs systems had been verified by UV-spectrometric detection and molecular dynamics simulations. The synthesized parameters were, respectively, optimized and the optimal conditions for the efficient adsorption property were as follows: template: MG, 1 mmol; functional monomer: methacrylic acid (MAA), 8 mmol; cross-linker: ethylene glycol dimethacryllate, 16 mmol; and porogen: acetonitrile, 30 mL. Fourier transform infrared spectroscopy and nitrogen adsorption experiments were used to characterize the MIPs. Scatchard analysis was used for estimation of the dissociation constants and maximum amounts of binding sites. The polymer based on MAA had two classes of heterogeneous binding sites characterized by two values of K D and B max: K D = 14.10 μmol L?1 and B max = 1.37 μmol g?1 for the higher affinity binding sites, and K D = 384.62 μmol L?1 and B max = 24.77 μmol g?1 for the lower affinity binding sites. The specificity of MIPs on SPE column was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward MG.  相似文献   

10.
We prepared LiNi0.4Co0.6O2 nanofibers by electrospinning at the calcination temperature of 450 °C for 6 h. The prepared LiNi0.4Co0.6O2 nanofibers was characterized by thermal, X-ray diffraction, and Fourier transform infrared (FTIR) studies. The morphology of LiNi0.4Co0.6O2 nanofibers was characterized by scanning electron microscopy studies. The asymmetric supercapacitor was fabricated using LiNi0.4Co0.6O2 nanofibers as positive electrode and activated carbon (AC) as negative electrode and a porous polypropylene separator in 1 M LiPF6–ethylene carbonate/dimethyl carbonate (LiPF6–EC:DMC) (1:1?v/v) as electrolyte. Cyclic voltammetry studies were then carried out in the potential range of 0 to 3.0 V at different scan rates which exhibited the highest specific capacitance of 72.9 F g?1. The electrochemical impedance measurements were carried out to find the charge transfer resistance and specific capacitance of the cell, and they were found to be 5.05 Ω and 67.4 F g?1, respectively. Finally, the charge–discharge studies were carried out at a current density of 1 mA cm?2 to find out the discharge-specific capacitance, energy density, and power density of the capacitor cell, and they were found to be 70.9 F g?1, 180.2 Wh kg?1, and 248.0 W kg?1, respectively.  相似文献   

11.
Calcium-activated chloride channels (CaCCs), for example TMEM16A, are widely expressed in a variety of tissues and are involved in many important physiological functions. We developed and validated an atomic absorption spectroscopy (AAS)-based detection system for high-throughput screening (HTS) of CaCC modulators. With this assay, Cl? flux from CHO cells stably transfected with TMEM16A is assayed indirectly, by measuring excess silver ions (Ag+) in the supernatant of AgCl precipitates. The screening process involved four steps: (1) TMEM16A CHO cells were incubated in high-K+ and high-Cl? buffer with test compounds, and with ionomycin as Ca2+ ionophore, for 12 min; (2) cells were washed with a low-K+, Cl?-free and Ca2+-free buffer; (3) CaCC/TMEM16A were activated in high-K+, Cl?-free buffer with ionomycin (10 μmol L?1) for 12 min; and (4) excess Ag+ concentration was measured using an ion channel reader (ICR, an AAS system). The assay can be used to screen CaCC activators and inhibitors at the same time. With this assay, positive control drugs, including NPPB, CaCCinh-A01, flufenamic acid (Flu) and Eact, all had good concentration-dependent effects on CaCC/TMEM16A. NPPB and CaCCinh-A01 inhibited the CaCC/TMEM16A currents completely at 300 μmol L?1, with IC50 values of 39.35?±?4.72 μmol L?1 and 6.35?±?0.27 μmol L?1, respectively; and Eact, activated CaCC/TMEM16A, with an EC50 value of 3.92?±?0.87 μmol L?1.  相似文献   

12.
In this study, we determined the parameters of a composite binder material (CBM) synthesis on α-C2S hydrate basis as well as analyzed and explained the early stages of its hydration process. In addition, the utilization possibility of gyrolite impured with Cd2+ ions in the binder composite material was presented. The results have shown that α-C2S hydrate was the dominant product of the hydrothermal synthesis at 175 °C after 16 h. The CBM was prepared by mixing synthetic α-C2S hydrate with quartz sand and milling the mixture in a vibrating cup mill. The hydration study on both pure CBM and CBM with gyrolite (2.5, 5 or 7.5 % by mass) impured with Cd2+ ions (~97 mg Cd2+ g?1) was conducted. The results showed that the additive of gyrolite impured with Cd2+ ions accelerates the initial hydration reaction (maximum heat flow of this stage increases from 0.006 W g?1 for pure binder to 0.009 W g?1 for the samples with 7.5 % gyrolite) while decreases both the rate of the main reaction (maximum heat flow of the pure binder estimated to be 0.0016 W g?1, whereas it is 0.0009 W g?1 in case of 7.5 % gyrolite additive) and total heat after 5 h of the hydration (approximately by 10 J g?1).  相似文献   

13.
The ratio of the nuclear quadrupole moments of the first excited and ground states of 99Ru has been determined for the first time. The value of Qe/Qg = +2.94 ± 0.04 was obtained from the quadrupole splitting observed in the 99Ru Mössbauer spectrum of the spinel Co2RuO4. Consideration of the ligand-field splitting at the ruthenium site leads to the belief that Qe and Qg are both positive, and Qe > 0.23 × 10?28 m2.  相似文献   

14.
《Analytical letters》2012,45(13):2524-2543
Abstract

Silica gel was modified by thiosalicylic acid via homogeneous routes to obtain immobilized silica gel sorbent (TSA‐immobilized silica gel). This new sorbent was characterized using variety of physical chemistry techniques including, high resolution solid state 13C and 29Si CP/MAS NMR, X‐ray photoelectron spectroscopy (XPS), thermal analysis (TGA and DTA), elemental analysis, and BET surface analysis as well as infrared spectroscopy (FTIR). New support was used for the selective extraction and concentration of lead ions by silica gel modified with thiosalicylic acid, as a highly selective and stable reagent, from aquatic samples and its determination with FAAS. Lead ions can be desorbed with 4 mol dm?3 HNO3. The sorption capacity for lead ions are found in the range of 64.40 to 69.90 µmol g?1 of chelating matrix. Tolerance limits for electrolytes and some trace metals in the sorption of lead is reported. Preconcentration factor was found as 150 for Pb(II). The lead in drinking water, mineral water, tap water, and fruit juice was quantitatively recovered with a relative standard deviation lower than 1.50%. A detection limit of the method for lead ions was found as 3.7 µg l?1.  相似文献   

15.
It was found that thermal activation of dolomite at 700–900°C may increase the sorption capacity of the samples up to 520 mg g?1. It was shown that the most effective sorbent for Co2+ ions may be obtained by calcination of dolomite at 800°C, which allows under dynamic conditions (20 m h?1) purifi cation of 500 column volumes of an aqueous solution with a Co(II) concentration of 10 mg L?1 to the maximum allowable concentration.  相似文献   

16.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

17.
Thermostable xylanase isoforms T70 and T90 were purified and characterized from the xerophytic Opuntia vulgaris plant species. The enzyme was purified to homogeneity employing three consecutive steps. The purified T70 and T90 isoforms yielded a final specific activity 134.0 and 150.8 U mg?1 protein, respectively. The molecular mass of these isoforms was determined to be 27 kDa. The optimum pH for the T70 and T90 xylanase isoforms was 5.0 and the temperature for optimal activity was 70 and 90 °C, respectively. The Km value of T70 and T90 enzyme isoforms was 3.49, 2.1 mg ml?1, respectively when oat spelt xylan was used as a substrate. The T70 had a Vmax of 10.4 μmol min?1 mg?1, and T90 had a Vmax of 8.9 μmol min?1 mg?1, respectively. In the presence of 10 mM Co2+, and Mn2+ the activity of T70 and T90 isoforms increased, where as 90 % inhibition was noted with of the use 10 mM Hg2+, Cd2+, Cu2+, Zn2+ while partial inhibition was observed in the presence of Fe3+, Ni2+, Ca2+and Mg2+. The T70 and T90 isoforms retained nearly 50 % activity in the presence of 2.0 M urea, while use of 40 mM SDS lowered the activity nearly 38–41 %. The substrate specificity of both T70 and T90 isoforms showed maximum activity for oat spelt xylan. Western blot, immunodiffusion, and in vitro inhibition assays confirmed reactivity of the T90 isoform with polyclonal anti-T90 antibody raised in rabbit, as well as cross-reactivity of the antibody with the T70 xylanase isoform.  相似文献   

18.
ZnSe quantum dots doped with Co2+ have been prepared in aqueous solution by a one-pot method using thioglycolic acid as stabilizer. The quantum dots were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV?Cvisible spectrophotometry, and spectrofluorimetry. The results confirmed the quantum dots formed a single cubic phase with zinc blende structure. The average particle size of the quantum dots was approximately 5 nm. Co2+ ions were doped into ZnSe lattice sites by substitution. As a result, infrared (IR) emission of Co2+ 4T2(F) ?? 4A2(F) at approximately 3.5 ??m was detected on excitation with 755 nm radiation.  相似文献   

19.
Chrysin, 7-hydroxyflavone, and quercetin were studied for their affinities with human serum albumin (HSA) in the presence and absence of Fe2+ and Co2+. The fluorescence intensities of HSA decrease remarkably with increasing concentration of the tested flavonoids. Chrysin resulted in a blue-shift of the emission line λ em of HSA from 336 to 330 nm whereas quercetin showed an obvious red-shift of λ em from 336 to 347 nm. However, the extents of the λ em shifts induced by flavonoids in the presence of mental ions are much bigger than those of the corresponding systems in the absence of mental ions. Fe2+ and Co2+ increased the quenching constants of the tested flavonoids for HSA by 12.4–48.1 and 15.0–66.7 %, respectively. The affinities of 7-hydroxyflavone, chrysin and quercetin for HSA increased by about 6.42, 7.38 and 0.62 %, respectively, in the presence of Fe2+. Co2+ increased the affinities of 7-hydroxyflavone, chrysin, and quercetin for HSA about 8.43, 7.86 and 11.73 %, respectively.  相似文献   

20.
A new method for solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed using 1,5-diphenylcarbazide doped magnetic Fe3O4 nanoparticles as extractant. The surface treatment did not result in the phase change of Fe3O4. Various factors which influenced the recovery of the analyte were investigated using model solutions and batch equilibrium technique. The maximum adsorption occurred at pH?>?6, and equilibrium was achieved within 5 min. Without filtration or centrifugation, these mercury loaded nanoparticles could be separated easily from the aqueous solution by simply applying an external magnetic field. At optimal conditions, the maximum adsorption capacity was 220 μmol g?1. The mercury ions can be eluted from the composite magnetic particles using 0.5 mol L?1 HNO3 as a desorption reagent. The detection limit of the method (3σ) was 0.16 μg L?1 for cold vapor atomic absorption spectrometry, and the relative standard deviation was 2.2%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The method was applied to the preconcentration and determination of trace inorganic mercury(II) in natural water and plant samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号