首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The National Institute of Standards and Technology (NIST) has recently introduced several reference materials for organic and inorganic nutrients in food matrices to assist the food industry in complying with nutrition labeling laws; the food industry and other government agencies have collaborated with NIST in this endeavor. Two food-matrix SRMs were issued in 1996: SRM 1544, Fatty Acids and Cholesterol in Frozen Food Composite; and SRM 1846, Infant Formula. Concentration values in SRM 1544 are provided for six fatty acids, cholesterol, and proximates (fat, protein, carbohydrate, etc.). Values are assigned for proximate and caloric content as well as the concentrations of sixteen vitamins and nine minerals and trace elements in SRM 1846. In 1997, NIST expects to issue two additional food-matrix SRMs: SRM 1548a, Typical Diet, and SRM 2383, Baby Food Composite. SRM 1548a will replace SRM 1548, Total Diet, and will have values assigned for proximates, major and minor inorganic nutrients, and toxic trace elements. SRM 2383 will have values assigned for proximates, vitamins, carotenoids, and inorganic nutrients.  相似文献   

2.
The National Institute of Standards and Technology (NIST) is developing a wide variety of Standard Reference Materials (SRMs) to support measurements of vitamins and other nutrients in foods. Previously, NIST has provided SRMs with values assigned for the folate vitamer, folic acid (pteroylglutamic acid), which is fortified in several foods due to its role in prevention of neural tube defects. In order to expand the number of food-based SRMs with values assigned for folic acid, as well as additional endogenous folates, NIST has developed methods that include trienzyme digestion and isotope-dilution liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Sample preparation was optimized for each individual food type, but all samples were analyzed under the same LC-MS/MS conditions. The application of these methods resulted in folic acid values for SRM 1849a Infant/Adult Nutritional Formula and SRM 3233 Fortified Breakfast Cereal of (2.33?±?0.06) μg/g and (16.0?±?0.7) μg/g, respectively. In addition, the endogenous folate vitamer 5-methlytetrahydrofolate (5-MTHF) was detected and quantified in SRM 1849a Infant/Adult Nutritional Formula, candidate SRM 1549a Whole Milk Powder, and candidate SRM 1845a Whole Egg Powder, resulting in values of (0.0839?±?0.0071) μg/g, (0.211?±?0.014) μg/g, and (0.838?±?0.044) μg/g, respectively. SRM 1849a Infant/Adult Nutritional Formula is the first food-based NIST SRM to possess a reference value for 5-MTHF and the first certified reference material to have an assigned 5-MTHF value based on LC-MS/MS. The values obtained for folic acid and 5-MTHF by LC-MS/MS will be incorporated into the final value assignments for all these food-based SRMs.  相似文献   

3.
Standard reference materials for foods and dietary supplements   总被引:1,自引:0,他引:1  
Well-characterized certified reference materials are needed by laboratories in the food testing, dietary supplement, and nutrition communities to facilitate compliance with labeling laws and improve the accuracy of information provided on product labels, so that consumers can make good choices. As a result of the enactment of the Nutrition Labeling and Education Act of 1990 and the Infant Formula Act of 1980, the National Institute of Standards and Technology (NIST) worked to develop a series of food-matrix standard reference materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue, SRM 2383 Baby Food Composite, SRM 2384 Baking Chocolate, SRM 2385 Slurried Spinach, and SRM 2387 Peanut Butter. With the enactment of the Dietary Supplement Health and Education Act of 1994, NIST has been working to develop suites of dietary supplement SRMs characterized for active and marker compounds and for toxic elements and pesticides, where appropriate. An updated SRM 1588b Organics in Cod Liver Oil, a suite of ephedra-containing materials (SRMs 3240–3245), a carrot extract in oil (SRM 3276), and a suite of ginkgo-containing materials (SRMs 3246–3248) are available. Several other materials are currently in preparation. Dietary supplements are sometimes provided in forms that are food-like; for these, values may also be assigned for nutrients, for example SRM 3244 Ephedra-Containing Protein Powder. Both the food-matrix and dietary supplement reference materials are intended primarily for validation of analytical methods. They may also be used as “primary control materials” in assignment of values to in-house (secondary) control materials to confirm accuracy and to establish measurement traceability to NIST.  相似文献   

4.
Recent developments in food-matrix Reference Materials at NIST   总被引:1,自引:0,他引:1  
Since 1996, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, and SRM 2383 Baby Food Composite. Three additional materials--SRM 1946 Lake Superior Fish Tissue, SRM 2384 Baking Chocolate, and SRM 2385 Spinach--are in preparation. NIST also recently assigned values for proximate (fat, protein, etc.), individual fatty acid, and total dietary fiber concentrations in a number of existing SRMs and reference materials (RMs) that previously had values assigned for their elemental composition. NIST has used several modes for assignment of analyte concentrations in the food-matrix RMs, including the use of data provided by collaborating laboratories, alone and in combination with NIST data. The use of data provided by collaborating food industry and contract laboratories for the analysis of food-matrix RMs has enabled NIST to provide assigned values for many analytes that NIST does not have the resources or analytical expertise to measure.  相似文献   

5.
Well-characterized reference materials are needed by laboratories in the food testing and nutrition communities to facilitate compliance with nutritional labeling laws, to provide traceability for food exports needed for acceptance in many foreign markets, and to improve the accuracy of nutrition information that is provided to assist consumers in making sound dietary choices. As a result of the enactment of the Nutrition Labeling and Education Act of 1990 and the Infant Formula Act of 1980, the National Institute of Standards and Technology (NIST) has developed a suite of food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, SRM 1946 Lake Superior Fish Tissue, SRM 2383 Baby Food Composite, SRM 2384 Baking Chocolate, SRM 2385 Spinach, and SRM 2387 Peanut Butter. Many of these materials were developed at the request of the food industry to populate a nine-sectored fat-protein-carbohydrate triangle developed by AOAC International. With the completion of SRM 2387, SRMs representing each sector of the triangle are now available. These food-matrix reference materials are intended primarily for validation of analytical methods for the measurement of proximates, fatty acids, vitamins, minerals, and so on in foods of similar composition. They may also be used as "primary control materials" in the value-assignment of in-house, secondary, control materials to confirm accuracy as well as to establish traceability to NIST.  相似文献   

6.
A number of food-matrix reference materials (RMs) are available from the National Institute of Standards and Technology (NIST) and from Agriculture Canada through NIST. Most of these materials were originally value-assigned for their elemental composition (major, minor, and trace elements), but no additional nutritional information was provided. Two of the materials were certified for selected organic constituents. Ten of these materials (Standard Reference Material [SRM] 1,563 Cholesterol and Fat-Soluble Vitamins in Coconut Oil [Natural and Fortified], SRM 1,566b Oyster Tissue, SRM 1,570a Spinach Leaves, SRM 1,974a Organics in Mussel Tissue (Mytilus edulis), RM 8,415 Whole Egg Powder, RM 8,418 Wheat Gluten, RM 8,432 Corn Starch, RM 8,433 Corn Bran, RM 8,435 Whole Milk Powder, and RM 8,436 Durum Wheat Flour) were recently distributed by NIST to 4 laboratories with expertise in food analysis for the measurement of proximates (solids, fat, protein, etc.), calories, and total dietary fiber, as appropriate. SRM 1846 Infant Formula was distributed as a quality control sample for the proximates and for analysis for individual fatty acids. Two of the materials (Whole Egg Powder and Whole Milk Powder) were distributed in an earlier interlaboratory comparison exercise in which they were analyzed for several vitamins. Value assignment of analyte concentrations in these 11 SRMs and RMs, based on analyses by the collaborating laboratories, is described in this paper. These materials are intended primarily for validation of analytical methods for the measurement of nutrients in foods of similar composition (based on AOAC INTERNATIONAL's fat-protein-carbohydrate triangle). They may also be used as "primary control materials" in the value assignment of in-house control materials of similar composition. The addition of proximate information for 10 existing reference materials means that RMs are now available from NIST with assigned values for proximates in 6 of the 9 sectors of the AOAC triangle. Five of these materials have values assigned for total dietary fiber-the first such information provided for materials available from NIST.  相似文献   

7.
Assessing dietary intake of vitamins from all sources, including foods, dietary supplements, and fortified foods, would be aided considerably by having analytical methodologies that are capable of simultaneous determination of several vitamins. Vitamins naturally present in foods may occur in different chemical forms, with levels ranging over several orders of magnitude. Vitamins in dietary supplements and fortified foods, however, are typically added in a single chemical form, and matrix issues are usually not as complex. These sources should thus be relatively amenable to approaches that aim for simultaneous determination of multiple vitamins. Our recent work has focused on development of liquid chromatography (LC)–UV/fluorescence and LC–tandem mass spectrometry methods for the simultaneous determination of water-soluble vitamins (thiamine, niacin, pyridoxine, pantothenic acid, folic acid, biotin, and riboflavin) in dietary supplement tablets and fortified foods, such as formula powders and breakfast cereals. As part of the validation of our methods and collaboration in characterization of a new NIST SRM 1849 Infant/Adult Nutritional Formula powder, we report data on SRM 1849 using isotope dilution mass spectrometric methods. Use of available NIST Standard Reference Materials® as test matrices in our method development and validation gives a benchmark for future application of these methods. We compare three chromatographic approaches and provide data on stability of vitamin standard solutions for LC-based multiple vitamin determinations.
Figure
Extracted ion chromatograms of seven vitamins using RP chromatography treatment  相似文献   

8.
In response to reference material needs expressed by the food industry and government regulators, the National Institute of Standards and Technology (NIST) has developed a new Standard Reference Material (SRM) consisting of a canned meat product with certified and reference values for a large number of constituents. SRM 1546 Meat Homogenate consists of a mixture of finely ground pork and chicken prepared and canned by a commercial process. NIST determined the concentration levels of cholesterol, sodium, calcium, iron, and seven fatty acids in this SRM using well defined methods and procedures. These analytes as well as 34 other constituents or properties were determined in an interlaboratory comparison exercise involving 21 laboratories, most of which are associated with the National Food Processors Association (NFPA) Food Industry Analytical Chemists Subcommittee (FIACS). From statistical analysis of the data, NIST assigned certified concentrations for the eleven analytes measured at NIST and reference concentrations for the proximates, six additional fatty acids, seven minerals, and seven water-soluble vitamins. Information values without uncertainties are provided for the concentrations of six additional constituents for which the uncertainties could not adequately be assessed. SRM 1546 will provide laboratories with a means to evaluate the accuracy of the methods they use to assign nutrient levels to processed meats and similar products.  相似文献   

9.
In response to reference material needs expressed by the food industry and government regulators, the National Institute of Standards and Technology (NIST) has developed a new Standard Reference Material (SRM) consisting of a canned meat product with certified and reference values for a large number of constituents. SRM 1546 Meat Homogenate consists of a mixture of finely ground pork and chicken prepared and canned by a commercial process. NIST determined the concentration levels of cholesterol, sodium, calcium, iron, and seven fatty acids in this SRM using well defined methods and procedures. These analytes as well as 34 other constituents or properties were determined in an interlaboratory comparison exercise involving 21 laboratories, most of which are associated with the National Food Processors Association (NFPA) Food Industry Analytical Chemists Subcommittee (FIACS). From statistical analysis of the data, NIST assigned certified concentrations for the eleven analytes measured at NIST and reference concentrations for the proximates, six additional fatty acids, seven minerals, and seven water-soluble vitamins. Information values without uncertainties are provided for the concentrations of six additional constituents for which the uncertainties could not adequately be assessed. SRM 1546 will provide laboratories with a means to evaluate the accuracy of the methods they use to assign nutrient levels to processed meats and similar products. Received: 11 October 2000 / Revised: 15 December 2000 / Accepted: 21 December 2000  相似文献   

10.
The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products’ vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7 % to 6.5 %.  相似文献   

11.
In recent years, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for vitamins and other organic nutrients. NIST uses several "modes" for assignment of analyte concentrations in SRMs, one of which includes the use of data provided by collaborating laboratories. Certification modes and liquid chromatographic methods that were used by NIST for value assignment of vitamin concentrations in recently introduced food-matrix SRMs are described in this paper. These materials and methods include vitamins D and E in coconut oil (SRM 1563) by gravimetry and multi-dimensional liquid chromatography (LC); vitamins A, E, and several B vitamins by reversed-phase LC and vitamin C by ion-exchange chromatography in infant formula (SRM 1846); and carotenoids and vitamins A and E by reversed-phase liquid chromatography in a baby food composite (SRM 2383).  相似文献   

12.
A suite of three green tea-containing Standard Reference Materials (SRMs) has been issued by the National Institute of Standards and Technology (NIST): SRM 3254 Camellia sinensis (Green Tea) Leaves, SRM 3255 Camellia sinensis (Green Tea) Extract, and SRM 3256 Green Tea-Containing Solid Oral Dosage Form. The materials are characterized for catechins, xanthine alkaloids, theanine, and toxic elements. As many as five methods were used in assigning certified and reference values to the constituents, with measurements carried out at NIST and at collaborating laboratories. The materials are intended for use in the development and validation of new analytical methods, and for use as control materials as a component in the support of claims of metrological traceability.  相似文献   

13.
A previously issued National Institute of Standards and Technology (NIST) Standard Reference Material (SRM), SRM 1649, Urban Dust/Organics has been analyzed for chlorinated organic contaminants (polychlorinated biphenyls and chlorinated pesticides) to provide certified values for a new class of compounds relative to the former certification. The material will be reissued as SRM 1649a. Four different analytical techniques were used. Specifically, two different methods of extraction (Soxhlet and pressurized fluid extraction) were used in conjunction with sample analysis by gas chromatography with two different columns (5% phenyl-methyl polysiloxane and 50% methyl C-18 dimethyl polysiloxane) that exhibit distinct selectivity, and with two different modes of detection (electron capture detection and mass spectrometry). The results from these techniques were combined to generate certified concentrations for 35 PCB congeners (some in combination) and 8 chlorinated pesticides. Ancillary assessments of additional chemical and physical properties of SRM 1649a include homogeneity, moisture, total organic carbon, extractable mass, and the particle-size distribution. The approach and the results for the certification of the PCB congeners and chlorinated pesticides in SRM 1649a, and the determination of the additional chemical and physical properties are described. In addition, the determination of PCBs and chlorinated pesticides in SRM 1648, Urban Particulate Matter (a particulate material certified for inorganic constituents), is also discussed although certified values are not presented. Received: 8 June 1998 / Revised: 4 September 1998 / Accepted: 26 September 1998  相似文献   

14.
A previously issued National Institute of Standards and Technology (NIST) Standard Reference Material (SRM), SRM 1649, Urban Dust/Organics has been analyzed for chlorinated organic contaminants (polychlorinated biphenyls and chlorinated pesticides) to provide certified values for a new class of compounds relative to the former certification. The material will be reissued as SRM 1649a. Four different analytical techniques were used. Specifically, two different methods of extraction (Soxhlet and pressurized fluid extraction) were used in conjunction with sample analysis by gas chromatography with two different columns (5% phenyl-methyl polysiloxane and 50% methyl C-18 dimethyl polysiloxane) that exhibit distinct selectivity, and with two different modes of detection (electron capture detection and mass spectrometry). The results from these techniques were combined to generate certified concentrations for 35 PCB congeners (some in combination) and 8 chlorinated pesticides. Ancillary assessments of additional chemical and physical properties of SRM 1649a include homogeneity, moisture, total organic carbon, extractable mass, and the particle-size distribution. The approach and the results for the certification of the PCB congeners and chlorinated pesticides in SRM 1649a, and the determination of the additional chemical and physical properties are described. In addition, the determination of PCBs and chlorinated pesticides in SRM 1648, Urban Particulate Matter (a particulate material certified for inorganic constituents), is also discussed although certified values are not presented. Received: 8 June 1998 / Revised: 4 September 1998 / Accepted: 26 September 1998  相似文献   

15.
Summary NIST issues food related, chemical composition standard reference materials for validating food analyses. SRMs certified for inorganic constituents are: Non-Fat Milk Powder (SRM 1549), Oyster Tissue (SRM 1566a), Bovine Liver (SRM 1577a), Wheat Flour (SRM 1567a), Rice Flour (SRM 1568a), and Total Diet (SRM 1548). The certificate of analysis for the total diet SRM also provides a certified concentration for cholesterol. Oyster tissue, a renewal SRM, is certified for 25 elements including 6 (Al, Cl, I, P, S, and V), that had not been certified in the previously issued SRM 1566. The elemental certified concentrations are based on concordant results of two or more independent analytical methods. The chemical compositions of the six food matrix SRMs are tabulated. Three food matrix SRMs certified for organic constituents are: Cholesterol and Fat-Soluble Vitamins in Coconut Oil (SRM 1563), Cholesterol in Whole Egg Powder (SRM 1845) and Organics in Cod Liver Oil (SRM 1588). Serum and urine matrix SRMs are also available that may be useful for metabolic and bioavailability studies.  相似文献   

16.
The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards (NBS)) issued the first botanical reference material certified for elemental content in January 1971, as Standard Reference Material (SRM) 1571, Orchard Leaves. In the following years a total of nine additional botanical certified reference materials have been issued by NIST. Each of these materials was certified for major, minor and trace elements except for SRM 2695, certified for fluorine only. Botanical SRMs issued since 1991 are significantly improved over previous materials in a number of ways. Probably the most significant change is the use of a jet-milling process to grind them to extremely fine particles. This has resulted in botanical SRMs with significantly improved homogeneity. These NIST reference materials are described with information on homogeneity, drying techniques and grit content.  相似文献   

17.
Standard Reference Material 968e Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum provides certified values for total retinol, γ- and α-tocopherol, total lutein, total zeaxanthin, total β-cryptoxanthin, total β-carotene, 25-hydroxyvitamin D3, and cholesterol. Reference and information values are also reported for nine additional compounds including total α-cryptoxanthin, trans- and total lycopene, total α-carotene, trans-β-carotene, and coenzyme Q10. The certified values for the fat-soluble vitamins and carotenoids in SRM 968e were based on the agreement of results from the means of two liquid chromatographic methods used at the National Institute of Standards and Technology (NIST) and from the median of results of an interlaboratory comparison exercise among institutions that participate in the NIST Micronutrients Measurement Quality Assurance Program. The assigned values for cholesterol and 25-hydroxyvitamin D3 in the SRM are the means of results obtained using the NIST reference method based upon gas chromatography-isotope dilution mass spectrometry and liquid chromatography-isotope dilution tandem mass spectrometry, respectively. SRM 968e is currently one of two available health-related NIST reference materials with concentration values assigned for selected fat-soluble vitamins, carotenoids, and cholesterol in human serum matrix. This SRM is used extensively by laboratories worldwide primarily to validate methods for determining these analytes in human serum and plasma and for assigning values to in-house control materials. The value assignment of the analytes in this SRM will help support measurement accuracy and traceability for laboratories performing health-related measurements in the clinical and nutritional communities.  相似文献   

18.
The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the “a” materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion–IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each “b” material is essentially identical with the corresponding “a” material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.  相似文献   

19.
The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the "a" materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion-IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each "b" material is essentially identical with the corresponding "a" material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.  相似文献   

20.
The IAEA-331 spinach material NIST SRM 1570a Spinach Leaves, submitted to an intercomparison run by the IAEA, has been analysed by k0-based INAA with counting using both low and high energy photon detectors. The results have been compared with (i) the certified values of the NIST SRM 1570a; the agreement is good, taking into account the uncertainties; and (ii) the certified and “consensus” values of the former NIST SRM 1570 Spinach Leaves, their composition in minor and trace-elements are quite similar; however a lower content has been observed for Co, Fe and Sc in the IAEA-331 and for Zn in the SRM 1570. For quality control, the NIST 1573 Tomato Leaves and the NIST 1575 Pine Needles have been analysed using the same conditions as for the IAEA-331. The results agree quite well with the certified and “consensus” values given in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号