首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Solid State Sciences》2004,6(9):973-980
This work deals with the preparation and the characterization of palladium and palladium–molybdenum supported on HY and NaY zeolites, with the aim to study the effect of molybdenum on the properties of palladium. Catalytic performances were tested in the reaction of methane combustion. The introduction of molybdenum in palladium exchanged zeolites NaY and HY was realized in dynamic or static regime (under vacuum) using Mo(CO)6 vapor at ambient temperature. Pd was found to migrate in supercages under the influence of Mo(CO)6, which produces by decomposition, Mo5+ species revealed by EPR spectroscopy and consequently palladium was reduced. Catalytic results show that the activity of PdHY increases with time during a relatively long period compared to the other samples. This activation in stream can be attributed to a slow migration of palladium to supercages. Nevertheless, PdHY and PdMoNaY were less active than PdNaY at 500 °C. The catalytic activity of monometallic samples increases with time, whereas it decreases for bimetallic ones. The comparison of the catalytic activities of Pd and PdMo supported on NaY and HY suggests that the basicity of the support enhances the oxidation ability of palladium by an increase of the electronic density of the metal particles at the surface. The pretreatment conditions exerted also a great effect on the behavior of mono and bimetallic catalysts. The reduction in hydrogen at 500 °C led to a decrease of the combustion activity depending on the nature of the catalyst.  相似文献   

2.
The electrocatalytic activity of bimetallic BiPd catalysts supported on Sibunit carbon towards hydrogen oxidation/evolution reactions (HOR/HER) was studied in a gas diffusion electrode (GDE) setup. Catalysts were synthesized by deposition of Pd on the carbon support, followed by impregnation of Pd/C precursor with Bi(NO3)3 solution and reduction in hydrogen. Transmission electron microscopy and local EDX elemental analysis revealed that BiPd/C catalysts contain bimetallic particles with narrow size distribution with maxima at 3.2–4.1 nm. X-ray diffraction evidenced that bimetallic particles are constituted by Pd–Bi solid solution. It was shown that modification of Pd/C by bismuth increases the specific activity of palladium towards HOR/HER by a factor of 3.  相似文献   

3.
以氯化钯(PdCl2)为金属前驱体, 乙醇为还原剂, 聚乙烯吡咯烷酮(PVP)为稳定剂和导向剂, 利用普通市售节能灯产生的光热作用, 辅助制备多重栾晶钯纳米颗粒。用HRTEM、FFT、PXRD、XPS、UV-Vis和FT-IR等技术对产品的形貌、晶体结构、光学性质和稳定性进行了表征, 并通过循环伏安法研究了多重栾晶Pd修饰玻碳电极对乙醇的电催化氧化活性。结果表明, 多重栾晶钯结构的形成依赖于光和热的协同作用。该材料的表面等离子共振吸收峰在可见光区域, 对乙醇有较好的电催化活性和抗中毒能力。  相似文献   

4.
以氯化钯(PdCl2)为金属前驱体,乙醇为还原剂,聚乙烯吡咯烷酮(PVP)为稳定剂和导向剂,利用普通市售节能灯产生的光热作用,辅助制备多重栾晶钯纳米颗粒.用HRTEM、FFT、PXRD、XPS、UV-Vis和FT-IR等技术对产品的形貌、晶体结构、光学性质和稳定性进行了表征,并通过循环伏安法研究了多重栾晶Pd修饰玻碳电极对乙醇的电催化氧化活性.结果表明,多重栾晶钯结构的形成依赖于光和热的协同作用.该材料的表面等离子共振吸收峰在可见光区域,对乙醇有较好的电催化活性和抗中毒能力.  相似文献   

5.
Composite poly-3,4-ethylenedioxythiophene (PEDOT)/palladium (Pd) films were obtained by chemical deposition of dispersed palladium nanoparticles into PEDOT conducting polymer matrix. The amounts of palladium particles incorporated into PEDOT films were estimated by electrochemical quartz crystal microbalance measurements. It was shown that palladium loading depends on the time a PEDOT film is exposed in the solution, containing Pd(II)-ions, on the concentration of Pd(II) ions and the film thickness. X-ray photoelectron spectroscopy data have confirmed the presence of metallic palladium in the polymer. The morphology of pristine and composite films as well as the size of Pd nanoparticles and their distribution were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From SEM images, it was found that Pd particles decorated PEDOT globular structures as quasi-spherical particles, and their mean size was dependent on synthesis conditions. The nanoparticles were non-uniformly dispersed on the polymer surface. The comparison of TEM images of composite PEDOT/Pd films obtained for different times of metal loading was made. The remarkable effect of loading time on the size of particles has been established: the mean size of dominating palladium particles was close to 6–10 nm for 30 s of metal deposition, and it was getting larger with the increase of deposition time (close to 15–30 nm for 120 s). It is most likely that with prolongation of synthesis time, the deposition of palladium predominantly proceeds on the already deposited palladium clusters, resulting in the extension growth of their size. Catalytic properties of PEDOT/Pd composite films were studied in respect to hydrazine oxidation by cyclic voltammetry and voltammetry on rotating disk electrode. The obtained data allow to conclude that the process of hydrazine oxidation on PEDOT/Pd composites takes place predominantly on palladium particles, located on the surface or in the near-surface layers of the polymer. The diffusion nature of the limiting current of hydrazine oxidation on composite PEDOT/Pd film in phosphate buffer solution рН = 6.86 was confirmed, and hydrazine diffusion coefficient was calculated. The increase of the limiting currents of hydrazine oxidation with the increase of Pd deposition time was observed, resulting from the increase of the active surface area of palladium particles, acting as microelectrodes. The electroanalytical applications of these nanocomposite materials for the determination of hydrazine were demonstrated.  相似文献   

6.
Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

7.
The physicochemical and catalytic properties of palladium catalysts were studied in the deep oxidation of methane. The catalysts were deposited on silicon nitride from aqueous (Pd/Si3N4-a) and toluene (Pd/Si3N4-t) solutions of palladium acetate. The use of aqueous and organic solutions of palladium acetate, all other preparation conditions being equal, resulted in the formation of palladium systems with different catalytic properties. The sample from Pd/Si3N4-t was characterized by high activity and stability. The systems studied had different structures and adsorption properties of palladium nanoparticles, which influenced the form of reagent adsorption, catalytic properties, and mechanism of surface reactions. The suggestion was made that the solvent played a key role in the formation of the active surface of Pd-containing catalytic systems.  相似文献   

8.
The electrochemical properties of a glassy-carbon electrode modified with a polyvinylpyridine film with electrodeposited palladium were studied. Conditions were selected for preparing a composite film on a glassy-carbon surface. It was found that palladium particles deposited on the polyvinylpyridine film exhibited electrocatalytic activity in the oxidation of H2C2O4. Compared to an unmodified electrode, the oxidation potential of oxalic acid decreased and the current of its oxidation multiply increased. The catalytic current of oxalic acid oxidation was a linear function of its concentration in the range from 1 × 10–2 to 1 × 10–6 M.  相似文献   

9.
Electro-oxidation of methanol in sulfuric acid solution was studied using palladium well-dispersed on titanium nanotubes, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. Pd dispersed on titania nanotubes, which leads to high surface area substrates, showed excellent catalytic activities compared to those of pure Pd and Pd-TiO2 nanoparticles. TEM results show a narrow distribution of TiO2 nanoparticles whose particle size is about 10 nm, and uniform nano-sized TiO2 nanotubes with 10 nm in diameters are seen from HRTEM . A homogeneous structure in the composite nanomaterials is indicated by XRD analysis. The composite electrode activities were measured by cyclic voltammetry (CV) and at 25 °C it was found that 3 wt% Pd in titania nanotubes had the best activity for methanol oxidation.  相似文献   

10.
Investigations on Metal Catalysts. XVII. Phase Structure, Dispersity, and Dehydrogenation Activity of Palladium Catalysts Modifided by Molybdenum and Tungsten Molybdenum and tungsten containing palladium catalysts were prepared by reduction of mixtures from Pd(NO3)2 with MoO3 and WO3, respectively, with hydrogen at 600°C and 800°C. The powders were characterized by means of several methods: Determination of the oxidation state for molybdenum and tungsten, X-ray measurements, N2 adsorption, CO chemisorption, H2 sorption, dehydrogenation of cyclohexane. The properties of the samples (heated at 600°C) are determined to a high degree by the co-existence of the palladium phase as well as the molybdenum and tungsten oxide, respectively, in the mean oxidation state +4. The after-reduction at 800°C leads to a great portion of metallic molybdenum and tungsten in the concerned catalysts. There are references that the treatment at 800°C in the presence of hydrogen causes for the Pd? Mo catalysts an increase of the palladium content in the surface of the crystallites.  相似文献   

11.
Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of ascorbic acid (AA) on palladium coated nanoporous gold film (PdNPGF) electrode. The deposition of palladium was done through oxidation of copper UPD layer by palladium ions. This low Pd‐loading electrode behaved as the nanostructured Pd for electrocatalytic reaction. The PdNPGF electrode exhibits excellent electrocatalytic behavior by enhancing the AA oxidation peak current due to synergistic influence of the Pd film and NPGF. The kinetic parameters such as electron transfer coefficient, α, was 0.47 and the voltammetric responses of the PdNPGF electrode were linear against concentration of AA in the ranges of 2.50–33.75 mM and 0.10–0.50 mM with CV and DPV respectively.  相似文献   

12.
The electrocatalytic Pt-Mo system was obtained by formation of platinum particles on the Mo surface under its contact with PtC62− (PtCl42−) under the open circuit conditions. Cyclic voltammograms of the obtained Pt(Mo) electrodes feature well pronounced peaks of hydrogen adsorption and desorption on Pt particles. Nonuniform platinum distribution across the electrode surface was found. Pt(Mo) electrodes showed a higher specific activity in the reaction of methanol oxidation in the potential range of 0.35–0.45 V (RHE) as compared to Pt/Pt.  相似文献   

13.
Palladium catalysts based on Siralox and AS aluminosilicate supports for the deep oxidation of methane were studied. With the use of XRD analysis, it was found that they were heterophase systems consisting of an amorphous aluminosilicate and γ-Al2O3 stabilized against agglomeration. It was found that the catalytic activity of palladium-aluminosilicate catalysts in the deep oxidation of methane at 500°C depended on the support precalcination temperature. X-ray photoelectron spectroscopy (XPS) was used to study the states of the AS-30 aluminosilicate support calcined at 600, 800, or 1000°C and palladium supported on it. It was found that the action of an acid impregnation solution of palladium nitrate on the aluminosilicate calcined at 800°C resulted in a structural rearrangement of the aluminosilicate surface. This rearrangement resulted in the stabilization of both palladium oxide and palladium metal particles at surface defects and the incorporation of these particles into the aluminosilicate after catalyst calcination. As a result, an anomalous decrease in catalytic activity was observed in aluminosilicate samples calcined at 800°C. According to XPS data, palladium in the catalyst was stabilized in the following three phases: metal (E b(Pd 3d 5/2) = 334.8 eV), oxide (E b(Pd 3d 5/2) = 336.8 eV), and “interaction” (E b(Pd 3d 5/2) = 335.8 eV) phases. The ratio between these phases depended on support and catalyst calcination temperatures. The interaction phase, which consisted of PdOx clusters stabilized in the aluminosilicate structure, was responsible for the retention of activity after calcination at high temperatures (800°C). Based on an analysis of XPS data, it was hypothesized that palladium in the interaction phase occurred in a charged state with the formal charge on the Pd atom close to 1 + (δ+ phase).  相似文献   

14.
Anodic oxidation of sodium hypophosphite on smooth Pd and Pd/Pt electrodes and a Pd membrane is studied. Thei vs.E curves for the Pd electrode exhibit two anodic current peaks. One is caused by oxidation of H2PO 2 - , and the other, by simultaneous ionization of Pd and oxidation of H2PO 2 - . The hypophosphite ion adsorbed on the Pd surface hinders the formation of the passive film. This brings about a rapid dissolution of Pd in the oxygen region and its subsequent deposition with the formation of palladium black. The oxidation probably includes a slow heterogeneous chemical reaction, specifically, a cleavage of the P-H bond of the hypophosphite ion. The change in the reaction stoichiometry following an increase in solution pH and in anodic polarization is probably due to changing conditions of the H2PO 2 - adsorption and the number of adsorption sites occupied by H2PO 2 - on the surface. Following an increase in polarization, the phosphite ion may undergo oxidation to phosphate. Deceased.  相似文献   

15.
A chemically modified carbon paste electrode was prepared by incorporating appropriate amounts of sodium humate(NaA). Palladium(II) was selectively accumulated in a solution of Britton-Robinson(B-R) buffer (pH 2.8) onto the electrode surface in open circuit mode. The subsequent electrochemical measurement was carried out by cyclic voltammetry (CV) and linear sweep anodic stripping voltammetry (LSASV) in a supporting electrolyte of 1.0 M HCl. The obtained oxidation currents (Ipa1 and Lpa2) were proportional to the Pd(II) concentration in the range of 4.7 × 10–6 - 9.4 × 10–8 M. The developed method was applied to the quantitative determination of palladium in real samples.  相似文献   

16.
This review summarizes the results of molecular-level studies on the mechanism of Pd/C catalyst formation from the PdCl2 precursor. Two processes occur in acidic media during the contact of H2PdCl4 with carbon: (a) adsorption of palladium chloride to form surface complexes and (b) redox interaction between PdCl2 and carbon with the formation of palladium metal particles. The ratio between these adsorbed palladium species depends on the conditions of adsorption and especially on the size of carbon support grains and the oxidative atmosphere. The observations are explained by the fact that carbon support exhibits electrochemical and ligand properties. X-ray diffraction, X-ray scattering, XPS, and high-resolution electron microscopy revealed that the nanostructure of carbon materials, in particular the extent of their three-dimensional ordering, is crucial for the ligand properties. The presence of two forms, metallic and ionic, of sorbed palladium determines the bimodal size distribution of the metal. After the reduction of ionic species, metal particles are “blocked” with support. The nature of the ionic forms of palladium (mostly (PdCl2)n) clusters chemically and epitaxially bound to the carbon surface suggests the mechanisms of the bimodal distribution of the supported metal particles on the surface and the methods for the control of the ratio between “blocked,” low-dispersed, and highly-dispersed particles in the catalyst. One of these methods is the use of palladium polynuclear hydroxo complexes (PHCs) with low oxidation potentials as starting compounds for catalysts preparation. The data on the PHC structure in a solution and its change upon the adsorption of PHC on the surface of the carbon material obtained by the17O,23Na,133Cs, and35Cl NMR techniques are discussed. PHCs are shown to be a clew of the [Pd(OH)2]n polymeric filament, whose fractions are bound with alkali metal ions. When PHC is adsorbed on the surface of the carbon support and then dried, palladium oxide is formed from which highly dispersed metal particles are formed during reduction. The nature of alkali metal ions in PHC affects the activity of the Pd/C catalyst. An important role of the ligand, electrochemical, and lyophilic properties of carbon material during the formation of the species of the active catalyst component is discussed.  相似文献   

17.
(Mn1 ? x M x )O2 (M = Co, Pd) materials synthesized under hydrothermal conditions and dried at 80°C have been characterized by X-ray diffraction, diffuse reflectance spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, and adsorption and have been tested in CO oxidation under CO + O2 TPR conditions and under isothermal conditions at room temperature in the absence and presence of water vapor. The synthesized materials have the tunnel structure of cryptomelane irrespective of the promoter nature and content. Their specific surface area is 110–120 m2/g. MnO2 is morphologically uniform, and the introduction of cobalt or palladium into this oxide disrupts its uniformity and causes the formation of more or less crystallized aggregates varying in size. The (Mn,Pd)O2 composition contains Pd metal, which is in contact with the MnO2-based oxide phase. The average size of the palladium particles is no larger than 12 nm. The initial activity of the materials in CO oxidation, which was estimated in terms of the 10% CO conversion temperature, increases in the following order: MnO2 (100°C) < (Mn,Co)O2 (98°C) < (Mn,Co,Pd)O2 (23°C) < (Mn,Pd)O2 (?12°C). The high activity of (Mn,Pd)O2 is due to its surface containing palladium in two states, namely, oxidized palladium (interaction phase) palladium metal (clusters). The latter are mainly dispersed in the MnO2 matrix. This catalyst is effective in CO oxidation even at room temperature when there is no water vapor in the reaction mixture, but it is inactive in the presence of water vapor. Water vapor causes partial reduction of Mn4+ ions and an increase in the proportion of palladium metal clusters.  相似文献   

18.
A palladium(II)-substituted Dawson type heptadecatungstodiphosphate, K8[P2W17O61Pd(H2O)](abbreviated as P2W17Pd in the following), was used to construct a new kind of chemically modified electrode (CME) by electrodeposition on the surface of a glassy carbon electrode for the first time. This modified electrode was characterized by Fourier transform infrared reflection absorption spectroscopy (FTIRRAS), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). FTIRRAS and XPS suggested that the adsorbed species on the electrode surface has the same Dawson type structure as the heteropolyanion in buffer solution. A couple of waves was observed on the P2W17Pd CME, which was ascribed to the redox process of the palladium center in the heteropolytungstate. After continuous potential scanning for 30 min in a pH 4.0 buffer, 94% of the original coverage remains for the CME. The P2W17Pd CME had high electrocatalytic activity for nitrite reduction and exhibited good reproducibility and stability. The catalytic peak current was found to be linear with the nitrite concentration in the range of 1 ∼ 50 mmol/L, with a correlation coefficient of 0.994. The effect of solution pH on the catalytic activity of the CME for nitrite reduction was also investigated. Received: 20 May 1998 / Revised: 7 September 1998 / Accepted: 15 September 1998  相似文献   

19.
A palladium(II)-substituted Dawson type heptadecatungstodiphosphate, K8[P2W17O61Pd(H2O)](abbreviated as P2W17Pd in the following), was used to construct a new kind of chemically modified electrode (CME) by electrodeposition on the surface of a glassy carbon electrode for the first time. This modified electrode was characterized by Fourier transform infrared reflection absorption spectroscopy (FTIRRAS), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). FTIRRAS and XPS suggested that the adsorbed species on the electrode surface has the same Dawson type structure as the heteropolyanion in buffer solution. A couple of waves was observed on the P2W17Pd CME, which was ascribed to the redox process of the palladium center in the heteropolytungstate. After continuous potential scanning for 30 min in a pH 4.0 buffer, 94% of the original coverage remains for the CME. The P2W17Pd CME had high electrocatalytic activity for nitrite reduction and exhibited good reproducibility and stability. The catalytic peak current was found to be linear with the nitrite concentration in the range of 1 ∼ 50 mmol/L, with a correlation coefficient of 0.994. The effect of solution pH on the catalytic activity of the CME for nitrite reduction was also investigated. Received: 20 May 1998 / Revised: 7 September 1998 / Accepted: 15 September 1998  相似文献   

20.
The influence of CeO2 addition on the formation of the microstructure, electronic state, and catalytic properties of Pd/TiO2 supported catalysts in CO oxidation were investigated. It was shown that, when Pd is supported on titanium dioxide modified with cerium dioxide, annealing at 500°C results in the formation of Pd/(CeO2-TiO2) catalysts with a nanocrystalline structure composed of incoherently intergrown fine anatase crystals and interblock boundaries in which palladium and cerium are stabilized. The higher catalytic activity of Pd/(CeO2-TiO2) catalysts compared to Pd/TiO2 catalysts is explained by the smaller size of Pd particles and the higher proportion of palladium in the Pdδ+ state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号