首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine the pore space structure evolution of ordered uniform sphere packs: simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC), undergoing simple diagenetic processes that reduce their pore spaces. Focus is on the occurrence of pore space microstructure changes or transitions, which are followed through their characteristic or critical pore lengths (l c). For almost all the cubic packings undergoing either compaction or cementation there are no singularities in l c. This is a consequence of having a single pore shape controlling flow at all stages of the process. However, this is not so for the BCC packing under cementation, for which l c is non-monotonic exhibiting a kink at ${\phi \approx 0.1452}$ , the porosity at which the pore shape controlling flow switches to a different form and position. These results for uniform compaction/cementation complement our previous works on pore networks under random shrinkage. Kinks in l c as porosity decreases signal pore space microstructure transitions that anticipate sudden changes in the permeability?Cporosity relation as porosity decreases. The consequences are great; clearly l c is not a constant unless the diagenetic process is mild. A l c function of compaction/cementation advancement should be used above a transition and a different l c function below. For the sphere packs here, once the diagenetic process has reduced the pore space substantially, a l c function of compaction/cementation advancement is mandatory if we are to capture all significant flow features.  相似文献   

2.
The characteristic pore length fixes the scale of permeability of a porous medium. For pore networks undergoing strong random compaction, this length becomes singular at transition porosities, revealing a change in the microstructure of the porespace controlling the transport. Nodal balances and lattice Boltzmann simulations of flow in pore networks under compaction show that the scaling between permeability and porosity changes near the transition porosities. Simulation results are compared with experimental permeability data from transparent two-dimensional micromodels of networks decorated with the same pore size distribution. Permeability?Cporosity data of media undergoing smooth compaction is well described by a single power law. Under strong compaction, however, the scaling between permeability and porosity is possible by traits only, the scaling exponent changes notably at given transition porosities. These behaviors are common to a wealth of permeability?Cporosity data thus far unexplained.  相似文献   

3.
An increasing number of articles are adopting Brinkman’s equation in place of Darcy’s law for describing flow in porous media. That poses the question of the respective domains of validity of both laws, as well as the question of the value of the effective viscosity μ e which is present in Brinkman’s equation. These two topics are addressed in this article, mainly by a priori estimates and by recalling existing analyses. Three main classes of porous media can be distinguished: “classical” porous media with a connected solid structure where the pore surface S p is a function of the characteristic pore size l p (such as for cylindrical pores), swarms of low concentration fixed particles where the pore surface is a function of the characteristic particle size l s , and fiber-made porous media at low solid concentration where the pore surface is a function of the fiber diameter. If Brinkman’s 3D flow equation is valid to describe the flow of a Newtonian fluid through a swarm of fixed particles or fibrous media at low concentration under very precise conditions (Lévy 1983), then we show that it cannot apply to the flow of such a fluid through classical porous media.  相似文献   

4.
In the frame of industrial risk and propulsive application, the detonability study of JP10–air mixtures was performed. The simulation and measurements of detonation parameters were performed for THDCPD-exo/air mixtures at various initial pressure (1 bar < P 0 < 3 bar) and equivalence ratio (0.8 < Φ < 1.6) in a heated tube (T 0 ~ 375 K). Numerical simulations of the detonation were performed with the STANJAN code and a detailed kinetic scheme of the combustion of THDCPD. The experimental study deals with the measurements of detonation velocity and cell size λ. The measured velocity is in a good agreement with the calculated theoretical values. The cell size measurements show a minimum value for Φ ~ 1.2 at every level of initial pressure studied and the calculated induction length L i corresponds to cell size value with a coefficient k = λ/L i = 24 at P 0 = 1 bar. Based on the comparison between the results obtained during this study and those available in the literature on the critical initiation energy E c, critical tube diameter d c and deflagration to detonation transition length L DDT, we can conclude that the detonability of THDCPD–air mixtures corresponds to that of hydrocarbon–air mixtures.
This paper is based on the work presented at the 33rd International Pyrotechnics Seminar, IPS 2006, Fort Collins, July 16–21, 2006.  相似文献   

5.
In this paper, the critical energies required for direct initiation of spherical detonations in four gaseous fuels (C2H2, C2H4, C3H8 and H2)–oxygen mixtures at different initial pressures, equivalence ratios and with different amounts of argon dilution are reported. Using these data, a scaling analysis is performed based on two main parameters of the problem: the explosion length R o that characterizes the blast wave and a characteristic chemical length that characterizes the detonation. For all the undiluted mixtures considered in this study, it is found that the relationship is closely given by Ro ? 26 l{R_{\rm o} \approx 26 \lambda} , where λ is the characteristic detonation cell size of the explosive mixture. While for C2H2–2.5O2 mixtures highly diluted with argon, in which cellular instabilities are shown to play a minor role on the detonation propagation, the proportionality factor increases to 37.3, 47 and 54.8 for 50, 65 and 70% argon dilution, respectively. Using the ZND induction length Δ I as the characteristic chemical length scale for argon diluted or ‘stable’ mixtures, the explosion length is also found to scale adequately with Ro ? 2320 DI{R_{\rm o} \approx 2320 \Delta_I} .  相似文献   

6.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

7.
Simulations of monodisperse and polydisperse (μ 2(A) = 0.13±0.002) 2D foam samples undergoing simple shear are performed using the 2D viscous froth (VF) model. These simulations clearly demonstrate shear localisation. The dependence of localisation length on the product λV (shearing velocity V times the wall drag coefficient λ) is examined and is shown to agree qualitatively with published experimental data. A wide range of localisation lengths is found at low λV, an effect which is attributed to the existence of distinct yield and limit stresses. The general continuum model is extended to incorporate such an effect and its parameters are subsequently related to those of the VF model. A Herschel–Bulkley exponent of a = 0.3 is shown to accurately describe the observed behaviour. The localisation length is found to be independent of λV for monodisperse foam samples.  相似文献   

8.
IntroductionInthispaper,weconsidertheellipticsystem(1λ) -Δu=f(λ,x,u)-v  (inΩ),-Δv=δu-γv(inΩ),u=v=0(onΩ),whereΩisasmoothboundeddomaininRN(N≥2)andλisarealparameter.Thesolutions(u,v)ofthissystemrepresentsteadystatesolutionsofreactiondiffusionsystemsderivedfromseveralap…  相似文献   

9.
Experiments have been carried out to determine the dependence of the detonation velocity in porous media, on mixture sensitivity and pore size. A detonation is established at the top end of a vertical tube and allowed to propagate to the bottom section housing the porous bed, comprised of alumina spheres of equal diameter (1–32 mm). Several of the common detonable fuels were tested at atmospheric initial pressure. Results indicate the existence of a continuous range of velocities with change in Φ, spanning the lean and the rich propagation limits. For all fuels in a given porous bed, the velocity decreases from a maximum value at the most sensitive mixture near Φ≈1 (minimum induction length), toV/V CJ≈0.3 at the limits. A decrease in pore size brings about a reduction inV/V CJ and a narrowing of the detonability range for each fuel. For porous media comprised of spherical particles, it was possible to correlate the velocity data corresponding to a variety of different mixtures and for a broad range of particle sizes, using the following empirical expression:V/V CJ=[1–0.35 log(d c /d p)]±0.1. The critical tube diameterd c is used as a measure of mixture sensitivity andd p denotes the pore diameter. An examination of the phenomenon at the composition limits, suggests that wave failure is controlled by a turbulent quenching mechanism.  相似文献   

10.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

11.
In this paper, an artificial neural network (ANN) for predicting critical heat flux (CHF) of concentric-tube open thermosiphon has been trained successfully based on the experimental data from the literature. The dimensionless input parameters of the ANN are density ratio, ρ l/ρ v; the ratio of the heated tube length to the inner diameter of the outer tube, L/D i; the ratio of frictional area, d i/(D i + d o); and the ratio of equivalent heated diameter to characteristic bubble size, D he/[σ/g(ρ lρ v)]0.5, the output is Kutateladze number, Ku. The predicted values of ANN are found to be in reasonable agreement with the actual values from the experiments with a mean relative error (MRE) of 8.46%. New correlations for predicting CHF were also proposed by using genetic algorithm (GA) and succeeded to correlate the existing CHF data with better accuracy than the existing empirical correlations.  相似文献   

12.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

13.
The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter; (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity λ1 is greater than the inclusion one λ2. In the inverse case of λ1 < λ2, the two methods agree as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of λ1 < λ2 is made. This work was supported by the National Natural Science Foundation of China and Chnese “863” High-Tech, Program.  相似文献   

14.
At the same solid volume fraction (Φ) the relative viscosity (η r ) of a concentrated noncolloidal bidisperse suspension of hard spherical particles is lower than that of a monodisperse suspension. In this paper a semi-analytical viscosity model of noncolloidal bidisperse suspensions is derived using an integration method. In this model the random loose packing density obtained by computer simulation is taken as the limit of solid volume fraction Φ m which depends upon both the diameter ratio (λ) of large to small particles and the volume fraction of large particles (ξ=Φ l /Φ). This model shows that at high solid volume fraction, Φ > 0.40, both λ and ξ significantly influence η r . For example, at Φ=0.5, it predicts that for monodisperse suspensions η r =70, while for bidisperse suspensions (λ=2 and ξ=0.7) η r =40. Comparison shows that, at high solid volume fraction (0.4–0.5), the relative viscosity predicted by this model is in good agreement with that predicted by the work of Shapiro and Probstein (1992) and of Patlazhan (1993), but is higher than that predicted by the work of others. Received: 27 February 2001 Accepted: 25 April 2001  相似文献   

15.
The problem of parameter distribution in the plasma perturbation region near an electrode surface is considered on the basis of the diffusion equations.Depending on the parameter values, in the solution there may exist two regions: laminar diffusion and a space charge layer.Approximate solutions are obtained for these regions in the form of the principal term of the expansion in terms of the parameter ==(h/l i)2, where h is the Debye length andl i is the dimension of the perturbation region. Under certain conditions these solutions may be obtained in closed form. The conditions for matching the solutions at the boundary of these regions are discussed.If the parameters defining the problem are such that hm orl im, where m is the mean free path, then the plasma is separated from the electrode by a dielectric layer of free-molecular particle motion. The presence of this layer must be taken into account in formulating the boundary conditions for the continuum equations.The results are used to determine the possible parameter variation in the perturbation region for specific gas mixtures and different values of the defining parameters.  相似文献   

16.
A linear stability analysis is used to study the conditions marking the onset of secondary flow in the form of longitudinal vortices for plane Poiseuille flow of water in the thermal entrance region of a horizontal parallel-plate channel by a numerical method. The water temperature range under consideration is 0∼30°C and the maximum density effect at 4°C is of primary interest. The basic flow solution for temperature includes axial heat conduction effect and the entrance temperature is taken to be uniform at far upstream location jackie=−∞ to allow for the upstream heat penetration through thermal entrance jackie=0. Numerical results for critical Rayleigh number are obtained for Peclet numbers 1, 10, 50 and thermal condition parameters (λ 1, λ 2) in the range of −2.0≤λ 1≤−0.5 and −1.0≤λ 2≤1.4. The analysis is motivated by a desire to determine the free convection effect on freezing or thawing in channel flow of water.  相似文献   

17.
Let W(F) = φ(λ 1 s + λ 2 s + λ 3 s ) + ψ(λ 1 r λ 2 r + λ 1 r λ 3 r + λ 2 r λ 3 r ) + f(λ 1 λ 2 λ 3) be a stored energy function. We prove that, for this function, rank-one convexity is equivalent to polyconvexity.under suitable assumptions on φ, ψ and f.  相似文献   

18.
We make the connection between the geometric model for capillarity with line tension and the Cahn‐Hilliard model of two‐phase fluids. To this aim we consider the energies where u is a scalar density function and W and V are double‐well potentials. We show that the behaviour of F ε in the limit ε→0 and λ→∞ depends on the limit of ε log λ. If this limit is finite and strictly positive, then the singular limit of the energies F ε leads to a coupled problem of bulk and surface phase transitions, and under certain assumptions agrees with the relaxation of the capillary energy with line tension. These results were announced in [ABS1] and [ABS2]. (Accepted November 5, 1997)  相似文献   

19.
When a nonhomogeneous solid is melting from below, convection may be induced in a thermally–unstable melt layer. In this study, the onset of buoyancy-driven convection during time-dependent melting is investigated by using similarly transformed disturbance equations. The critical Darcy–Rayleigh numbers based on the melt-layer thickness, Ra H,c, are found numerically for various conditions. For small superheats, the present predictions show that Ra H,c is located between 27.1 and 4π 2 and it approaches the well-known results of the original Horton–Rogers–Lapwood problem. However, for high superheats, it is dependent on the phase change rate λ and the relation of Ra H,c λ = 25.89 is shown.  相似文献   

20.
Experiments in a parallel band apparatus and a transparent concentric cylinder device allow the observation of bubble deformation (shape and orientation) and breakup as a function of the viscosity ratio λ and the Capillary number Ca. For viscosity ratios between 3.1 × 10−7 and 6.7 × 10−8, critical Capillary numbers Ca c for bubble breakup between 29 and 45 are found. It is furthermore shown that in the given parameter space no clear distinction between tip breakup and fracture can be made for bubbles. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号