首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [Rh(CO)2Cl]2 with 0.5 mol equivalent of the ligands [P(X)(CH2-CH2P(X)Ph2)3](PP3X4) {where X = O(a), S(b) and Se(c)} affords tetranuclear complexes of the type [Rh4(CO)8Cl4(PP3X4)] (1a-1c). The complexes 1a-1c have been characterized by elemental analyses, mass spectrometry, IR and multinuclear NMR spectroscopy, and the ligands b and c are structurally determined by single crystal X-ray diffraction. 1a-1c undergo oxidative addition (OA) reactions with CH3I to generate Rh(III) oxidised products. Kinetic data for the reaction of 1a and 1b with excess CH3I indicate a pseudo first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester show a higher Turn Over Frequency (TOF = 1349-1748 h−1) compared to the well-known species [Rh(CO)2I2] (TOF = 1000 h−1) under the similar experimental conditions. However, 1b and 1c exhibit lower TOF than 1a, which may be due to the desulfurization and deselinization of the ligands in the respective complexes under the reaction conditions.  相似文献   

2.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

3.
First examples of tungsten aminocarbene complexes [(OC5)W{C(SiR1nR23-n)NH2}] 2a-d (R1 = Ph, R2 = Me) were synthesized via ammonolysis of the corresponding methoxycarbene complexes 1a-d. They were characterized by NMR spectroscopy, MS, IR, UV/Vis and elemental analysis, and in the case of the C-triphenylsilyl derivative 2a by single-crystal X-ray structure analysis. The reaction of P-chloro alkylidenephosphane 3 with complexes 2a-d, meant to give 2H-azaphosphirene complexes, was monitored by 31P NMR spectroscopy to reveal the formation of the products 4-7, which were presumably formed via decomposition of the transient complexes 10a-d.  相似文献   

4.
Phosphorous-bridged bisphenoxy titanium complexes were synthesized and their ethylene polymerization behavior was investigated. Bis[3-tert-butyl-5-methyl-2-phenoxy](phenyl)phosphine tetrahydrofuran titanium dichloride (4a) was obtained by treatment of 3 equiv of n-BuLi with bis[3-tert-butyl-2-hydroxy-5-methylphenyl](phenyl)phosphine hydrochloride salt (3a) followed by TiCl4(THF)2 in THF. THF-free complexes 5a-5d were synthesized more conveniently by the direct reaction of MOM-protected ligands (2a-2d) with TiCl4 in toluene. X-ray analysis of 4a revealed that the ligand is bonded to the octahedral titanium (IV) center in a facial fashion and two chlorine atoms possess cis-geometry. Complexes 4a and 5a-5d were utilized as catalyst precursors for ethylene polymerization. Complex 5c gave high molecular weight polyethylene (Mw = 1,170,000, Mw/Mn = 2.0) upon activation with Al(iBu)3/[Ph3C][B(C6F5)4] (TB). Ethylene polymerization activity of 5d activated with Al(iBu)3/TB reached 49.0 × 106 g mol (cat) −1 h−1.  相似文献   

5.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

6.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

7.
Benzo[1,2-h: 5,4-h′]diquinoline(1a) represents a new family of tridentate NCN pincer ligand. We report the synthesis of the parent ligand (1a) and its derivatives (1b R = Me, 1c R = t-Butyl, 1d R = Phenyl). The ligands were characterized by 1H and 13C NMR, as well as mass spectral analysis, and X-ray structural determination. They readily undergo cyclometalation with LiPdCl4, Pd(OAc)2, and K2PtCl4 to form the cyclometalated Pd(NCN)Cl (2a-c, 3a), and Pt(NCN)Cl (4a) pincer complexes. These complexes have been characterized through NMR, and mass spectrometry. PdNCNCl (2a) structure was determined by single crystal X-ray diffraction. Complex 2a has shown to catalyze the Heck coupling reaction between bromobenzene and n-butylacyrlate in NMP at 140 °C, TON of 2506 were observed.  相似文献   

8.
A series of aluminum and zinc complexes supported by functionalized phenolate ligands were synthesized and characterized. Reaction of 2-(3,5-R2C3N2)C6H4NH2 (R = Me, Ph) with salicylaldehyde or 3,5-di-tert-butylsalicylaldehyde afforded 2-((2-(1H-pyrazol-1-yl)phenylimino)methyl)phenol derivatives 2a-2d. Treatment of 2a-2d with an equiv. of AlR23 (R2 = Me, Et) gave corresponding aluminum aryloxides 3a-3e, while reaction with an equiv. of ZnEt2 afforded zinc aryloxides 4a-4d. Treatment of 2c with 0.5 equiv. of ZnEt2 formed diphenolato zinc complex 5. All new compounds were characterized by 1H and 13C NMR spectroscopy and elemental analyses. The structures of complexes 3a, 4a and 5 were further characterized by single crystal X-ray diffraction techniques. The catalytic activity of complexes 3-5 toward the ring-opening polymerization of ε-caprolactone was studied. The zinc complexes (4a-4d) exhibited higher catalytic activity than the aluminum complexes (3a-3e). The diphenolato zinc complex 5 showed lower catalytic activity than the ethylzinc complexes 4a-4d. The aluminum complex (3b) is inactive to initiate the ROP of rac-lactide, while the zinc complex (4d) is active initiator for the ROP of rac-lactide, giving atactic polylactide.  相似文献   

9.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

10.
Brian M. Bocknack 《Tetrahedron》2005,61(26):6266-6275
A practical enantioselective synthesis of chiral β-diketonate ligands 1a-1d, which are of ‘pseudo planar-chiral’ topology, is described. Additionally, the first chiral bis(diketonates) 2a-2c, ligands of C2-symmetry that are isoelectronic with respect to related salen ligand systems, have been prepared. Protocols for the metallation of ligands 1a-1d, 2b and 2c are reported.  相似文献   

11.
A set of multidentate ligands have been synthesized and used to stabilize the putative highly electrophilic zinc species initiating ring-opening polymerization (ROP) of cyclohexene oxide (CHO) and propylene oxide (PO). Reaction of the bidentate C2-chiral bis(oxazoline) ligand (R2,R3BOX: R2 = (4S)-tBu, R3 = H (a); R2 = (4S)-Ph, R3 = H (b); R2 = (4R)-Ph, R3 = (5S)-Ph (c)) with Zn(R1)2 (R1 = Et (1), Me (2)) led to the heteroleptic three-coordinate complexes (R2,R3BOX)ZnR1, 1a-c and 2a, which were isolated in 92-96% yield. Next, two pyridinyl-functionalized N-heterocyclic carbene (NHC) ligands have been designed and synthesized: the 1,3-bis(2-pyridylmethyl)imidazolinium salt (d) and the protected NHC adduct 2-(2,3,4,5,6-pentafluorophenyl)-1,3-bis(2-pyridylmethyl)imidazolidine (e). The reaction of ligands d and e with ZnEt2 led directly to the formation of (NHC)ZnEt(Cl) 3d complex with ethane elimination and the adduct (NHC-C6F5(H))ZnEt24e, respectively, in high yield. In situ combinations of selected complexes 1a-c, 3d and 4e with B(C6F5)3 (1 or 2 equivalents) give active systems for ROP, with high productivity (3.3-5.9 106 gpolym. molZn−1 h−1) and high molecular weight (Mn up to 132 103 g mol−1) for CHO polymerization. Although the in situ B(C6F5)3-activated zinc species were not isolated, the sterically demanding BOX ligands (1c > 1b > 1a) and functionalized NHC ligands seem to enhance the stability of highly electrophilic zinc complexes over ligand redistribution, allowing a better control of the cationic ROP as reflected particularly for 3d and 4e complexes by their respective efficiency (42-88%).  相似文献   

12.
Four heterocyclic salts 1a-d were prepared by Ca2+-assisted cyclization of fluoro derivatives 3, and investigated by spectroscopic (NMR and UV), electrochemical, and computational (DFT and MP2) methods. The mechanism for the formation of the cations was investigated at the DFT level of theory. 2-D NMR spectroscopy for 1[ClO4] in DMSO­d6 aided with DFT results permitted the assignment of 1H and 13C NMR signals in cations 1. The molecular and crystal structures for 1a[ClO4] [C13H10ClNO4 triclinic, P−1, a=9.6517(12) Å, b=11.0470(13) Å, c=12.2373(15) Å, α=67.615(1)°, β=78.845(2)°, γ=87.559(2)°; V=1183.0(2) Å3, Z=4] and 1d[ClO4] [C12H9ClN2O4 triclinic, P−1, a=5.9525(6) Å, b=8.3141(9) Å, c=12.2591(13) Å, α=73.487(1)°, β=83.814(1)°, γ=83.456(1)°; V=576.07(10) Å3, Z=2] were determined by X-ray crystallography and compared with results of DFT and MP2 calculations. Electrochemical analysis gave the reduction potential order (1b>1c1d>1a), which is consistent with computational results.  相似文献   

13.
A series of novel amphiphilic ferrocenylimines and their cyclopalladated complexes of general formula [Fe(η5-C5H5)(η5-C5H4CR1NR2)] (R1=H, R2=C12H25-n4a, R1=H, R2=C16H33-n4b, R1=CH3, R2=C12H25-n4c, R1=CH3, R2=C16H33-n4d), [PdCl{[(η5-C5H5)]Fe[(η5-C5H3)CR1NR2]}]2 (5a-d), [PdCl{[(η5-C5H5)]Fe[(η5-C5H3)-CR1NR2]}(PPh3)] (6a-d), were prepared and characterized by 1H NMR, 13C NMR, 31P NMR, IR, HRMS, and elemental analysis. The crystal structures of 5c,d were determined by X-ray crystallography. These amphiphilic cyclopalladated complexes are thermally stable and insensitive to oxygen and moisture. The redox properties of 4a-d, 5a-d, 6a-d were also investigated using cyclic voltammetric technique. Compounds 5a-d, 6a-d displayed good activity in the Heck reaction of a variety of aryl halides with ethyl acrylate or styrene and the Suzuki-Miyaura cross-coupling reaction of aryl bromides with phenylboronic acid in bulk solution. They are also suitable for formation of Langmuir-Blodgett (LB) films.  相似文献   

14.
A series of nickel and palladium complexes bearing (imino)pyridyl alcohol tridentate [N,N,O] ligands, 2-(ArNCMe)-6-{(HO)CR2}C5H3N (L1-L4), were synthesized and sufficiently characterized by elemental and spectroscopic analysis along with X-ray diffraction analysis. The X-ray diffraction demonstrated that five-coordinated nickel halide complexes (1a-4a and 1b) and six-coordinated nickel acetate complex (1c) were prepared, and cationic palladium complexes (1d and 2d) formed with the [PdCl4]2− counterion. All these complexes displayed high catalytic activities up to 1.883 × 107 g(PNB) mol−1(cat) h−1 (2d) for the vinyl polymerization of norbornene on treatment with excess methylaluminoxane (MAO), affording the vinyl-type PNBs with high molecular weights and relatively narrow molecular weight distributions. The parameters of reaction conditions, the type of metals and steric effects of coordinative ligands had influences on the catalytic properties.  相似文献   

15.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

16.
Reactions of ω-diphenylphosphinofunctionalized alkyl phenyl sulfides Ph2P(CH2)nSPh (n = 1, 1a; 2, 2a; 3, 3a), sulfoxides Ph2P(CH2)nS(O)Ph (n = 1, 1b; 2, 2b; 3, 3b) and sulfones Ph2P(CH2)nS(O)2Ph (n = 1, 1c; 2, 2c; 3, 3c) with dinuclear chlorido bridged rhodium(I) complexes [(RhL2)2(μ-Cl)2] (L2 = cycloocta-1.5-diene, cod, 4; bis(diphenylphosphino)ethane, dppe, 5) afforded mononuclear Rh(I) complexes of the type [RhCl{Ph2P(CH2)nS(O)xPh-κP}(cod)]1 (n/x = 1/0, 6a; 1/1, 6b; 1/2, 6c; 2/0, 8a; 2/1, 8b; 2/2, 8c; 3/0, 10a; 3/1, 10b; 3/2, 10c) and [RhCl{Ph2P(CH2)nS(O)xPh-κP}(dppe)] (n/x = 1/0, 7a; 1/1, 7b; 1/2, 7c; 2/0, 9a; 2/1, 9b; 2/2, 9c; 3/0, 11a; 3/1, 11b; 3/2, 11c) having the P^S(O)x ligands κP coordinated. Addition of Ag[BF4] to complexes 6-11 in CH2Cl2 led with precipitation of AgCl to cationic rhodium complexes of the type [Rh{Ph2P(CH2)nS(O)xPh-κPS/O}L2][BF4] having bound the P^S(O)x ligands bidentately in a κPS (13a-18a, 15b-18b) or a κPO (13b, 14b, 13c-18c) coordination mode. Unexpectedly, the addition of Ag[BF4] to 6a in THF afforded the trinuclear cationic rhodium(I) complex [Rh3(μ-Cl)(μ-Ph2PCH2SPh-κPS)4][BF4]2·4THF (12·4THF) with a four-membered Rh3Cl ring as basic framework. Addition of sodium bis(trimethylsilyl)amide to complexes 6-11 led to a selective deprotonation of the carbon atom neighbored to the S(O)x group (α-C) yielding three different types of organorhodium complexes: a) Organorhodium intramolecular coordination compounds of the type [Rh{CH{S(O)xPh}CH2CH2PPh2CP}L2] (22a-c, 23a-c), b) zwitterionic complexes [Rh{Ph2PCHS(O)xPh-κPS/O}L2] having κPS (21a, 21b) and κPO (20b/c, 21c) coordinated anionic [Ph2PCHS(O)xPh] ligands, and c) the dinuclear rhodium(I) complex [{Rh{μ-CH(SPh)PPh2CP}(cod)}2] (19). All complexes were fully characterized spectroscopically and complexes 15b, 15c, 12·4THF and 19·THF additionally by X-ray diffraction analysis. DFT calculations of zwitterionic complexes gave insight into the coordination mode of the [Ph2PCHS(O)Ph] ligand (κPS versus κPO).  相似文献   

17.
The reactions of organoantimony chlorides L1,2SbCl21 and 2 ([2,6-(ROCH2)2C6H3], R = Me; L1 and R = t-Bu; L2) with silver salts of selected carboxylic acids resulted to corresponding organoantimony carboxylates L1,2Sb(OOCR′)2, 1a-c (for L1) and 2a-c (for L2), where R′ = CH3 for 1a, 2a; R′ = CHCH2 for 1b, 2b and R′ = CF3 for 1c, 2c. All compounds were characterized by the help of elemental analysis, ESI-MS, 1H and 13C NMR spectroscopy. The solid state structure investigation using single crystal X-ray diffraction techniques (2a, c) and IR spectroscopy revealed significant differences in coordination mode of both O,C,O chelating ligand and carboxylic groups in this set of compounds. The structure of all compounds in solution of non-coordinating solvent (CDCl3) was determined by means of variable temperature 1H, 13C, 19F NMR spectroscopy and IR spectroscopy.  相似文献   

18.
Sulfur analogues of the soluble guanylate cyclase (sGC) inhibitor NS2028 1a are synthesized. Treating 8-bromo-2H-benzo[b][1,4]oxazin-3(4H)-one oxime (6) with 1,1′-thiocarbonyldiimidazole (1.1 equiv) gave the carbamothioate 8-bromo-4H-[1,2,4]oxadiazolo[3,4-c][1,4]benzoxazine-1-thione (3a) in 83% yield. Alternatively reacting NS2028 1a with P2S5 (0.5 equiv) affords the carbamothioate 3a in 80% yield. Similar treatment of 8-aryl substituted NS2028 analogues 1b-d with P2S5 gave the carbamothioates 3b-d in 64-91% yields. Although quite stable, the carbamothioates 3a-d could be thermally isomerized in the presence of Cu (10 mol %) to afford the thiocarbamates 4a-d in high yields. Interestingly, in the case of carbamothioate 3a Pd and In metals also facilitated the isomerization. Furthermore, treatment of the thiocarbamates 4a-d with P2S5 (0.5 equiv) affords the carbamodithioates 5a-d in 72-89% yields. All new compounds are fully characterized including single crystal X-ray data for carbamothioate 3a and thiocarbamate 4a. Finally, a mechanism is proposed for the carbamothioate to thiocarbamate isomerization.  相似文献   

19.
The synthesis of atropisomeric 2-substituted benzamides 2a-e, 3a-e, and 4a-e, and characterization by X-ray structure analysis of 2d, 2e, 3c, 3e, 4c, and 4e are reported. Dynamic 1H NMR spectroscopic studies of benzamides 2b-d, 3b-d, and 4b-d indicate that only two of the four possible rotamers are present in solution, with population ratios ranging between 1.5:1 and 4.1:1. The measured free energy of activation to interconversion of the rotamers ranged from 12.4 to 18.9 kcal mol−1. Benzamides ArCON[(S)-phenethyl]2 (2e, 3e, and 4e), exhibited atropisomer ratios between 1.7:1 and 1:1, and free energies of interconversion of the rotamers ranged from 11.5 to 17.6 kcal mol−1. The highest rotation barriers were observed for the ortho-nitro derivatives 2a-e. Molecular calculations at the semiempirical level (PM3MM) gave free energies of activation for benzamides 2e and 3e of 23.6 and 12.4 kcal mol−1, respectively, which are comparable to the experimental values.  相似文献   

20.
The visualization of inducible nitric oxide synthase (iNOS) in vivo with specific radioactive probes could provide a valuable insight into the diseases associated with upregulation of this enzyme. Aiming at that goal, we have synthesized a novel family of conjugates bearing a pyrazolyl-diamine chelating unit for stabilization of the fac-[M(CO)3]+ core (M = 99mTc, Re) and pendant guanidino (L1 = guanidine, L2 = N-hydroxyguanidine, L3 = N-methylguanidine, L4 = N-nitroguanidine) or S-methylisothiourea (L5) moieties for iNOS recognition. L1-L5 reacted with fac-[M(CO)3(H2O)]+, yielding complexes of the type fac-[M(CO)3(k3-L)]+ (M = Re/99mTc; 1/1a, L = L1; 2/2a, L = L2; 3/3a, L = L3; 4/4a, L = L4; 5/5a, L = L5), which were fully characterized by the usual analytical methods in chemistry and radiochemistry, including X-ray diffraction analysis in the case of 1. The rhenium complexes 1-5 were prepared as “cold” surrogates of the 99mTc(I) complexes. Enzymatic assays with murine purified iNOS demonstrated that L1, L2, 1 and 2 are poor NO-producing substrates. These assays have also shown that metallation of L4 and L5 (Ki > 1000 μM) gave complexes with increased inhibitory potency (4, Ki = 257 μM; 5, Ki = 183 μM). The organometallic rhenium complexes permeate through LPS-treated RAW 264.7 macrophage cell membranes, interacting specifically with the target enzyme, as confirmed by the partial suppression of NO biosynthesis (ca. 20% in the case of 4 and 5) in this cell model. The analog 99mTc(I)-complexes 1a-5a are stable in vitro, being also able to cross cell membranes, as demonstrated by internalization studies in the same cell model with compound 4a (4h, 37 °C; 33.8% internalization). Despite not being as effective as the α-amino-acid-containing metal-complexes previously described by our group, the results reported herein have shown that similar 99mTc(I)/Re(I) organometallic complexes with pendant amidinic moieties may hold potential for targeting iNOS expression in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号