首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β =?0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29–0.41.  相似文献   

2.
Luminescence studies of singlet-oxygen photosensitization by methylene blue molecules in various solvents, as well as by hybrid associates of this dye with colloidal Ag2S quantum dots with average sizes of 2.0, 2.4, and 2.7 nm, are performed. The conditions for simultaneous singlet-oxygen photosensitization and detection of the IR luminescence of colloidal Ag2S quantum dots passivated by thioglycolic acid are determined.  相似文献   

3.
Optics and Spectroscopy - We have considered the resonant nonradiative energy transfer in hybrid associates of thionine dye (TH+) molecules and Ag2S colloidal quantum dots (QDs) passivated with...  相似文献   

4.
The results of studying degradation of the optical properties of colloidal Ag2S and CdS quantum dots (QDs) 2.6–3.2 nm in size passivated by thioglycolic acid (TGA) are presented. The photoluminescence intensity of colloidal Ag2S QDs has been found to decrease under laser irradiation at a wavelength of 445 nm, beginning with the effective power of 10 mW. The observed effect is interpreted as a photochemical reaction of formation of new nonradiative-recombination channels in Ag2S QDs upon excitation. It is established for colloidal CdS QDs passivated by TGA that a decrease in the optical density in the entire absorption spectrum and the luminescence intensity is accompanied by precipitation of the colloidal particles in a cell and related to photodegradation of the passivating shell.  相似文献   

5.
Temperature properties of recombination IR luminescence (1240 nm) for ensembles of colloidal Ag2S quantum dots with an average size of 3.6 ± 0.5 nm have been investigated in gelatin. Thermostimulated luminescence, resulting from varying temperatures and at continuous photoexcitation of colloidal Ag2S quantum dots, has been detected. A peak of thermolumination has been found at the temperature region of 100–240 K, which is maintained by two components, the presence of which is by the existence of two types of hole trap states with depths of 0.07 and 0.09 eV.  相似文献   

6.
The interaction of CdSe/ZnS quantum dots (QDs) with metal-free tetrapyridinoporphyrazine (TPPA) molecules in chloroform has been investigated. It was found that, at QD concentrations lower than ~3 × 10?7 M, QD luminescence is quenched in the presence of TPPA and characteristic changes occur in the absorption and luminescence spectra of TPPA, which reflect the interaction of TPPA molecules with the QD surface. Along with the QD luminescence quenching, sensitized luminescence of TPPA molecules adsorbed on QDs was observed. The luminescence excitation spectra of adsorbed TPPA molecules unambiguously indicate the presence of energy transfer from QDs to TPPA. The efficiency of energy transfer from QDs to TPPA is estimated from the quantum yield of sensitized TPPA luminescence.  相似文献   

7.
Ag2S quantum dots (QDs) have aroused extensive concerns in intravital imaging field due to their merits of narrow bandgap, low biological toxicity and decent fluorescence emission properties in the second near-infrared (NIR-II) window. However, low quantum yield (QY) and poor uniformity of Ag2S QDs are still main obstacles for its application. In this work, a novel strategy of utilizing ultrasonic field is presented, which can enhance the microdroplet-based interfacial synthesis of Ag2S QDs. The ultrasound increases the presence of ions at the reaction sites by enhancing the ion mobility in the microchennels. Therefore, the QY is enhanced from 2.33 % (optimal QY without ultrasound) to 8.46 %, which is the highest value of Ag2S ever reported without ion-doping. Also, the decrease of the corresponding full width at half maximum (FWHM) from 312 nm to 144 nm indicates the obvious uniformity improvement of the obtained QDs. Further mechanism exploration illustrates that ultrasonic cavitation significantly increases the interfacial reaction sites by splitting the droplets. Meanwhile, the acoustic flow field strengthens the ion renewal at the droplet interface. Consequently, the mass transfer coefficient increases by more than 500 %, which is favorable to improve both the QY and quality of Ag2S QDs. This work serves both fundamental research and practical production for the synthesis of Ag2S QDs.  相似文献   

8.
The luminescent properties of hybrid nanostructures constructed from colloidal quantum dots (QDs) of CdS passivated with thioglycolic acid, europium(III) tris(tenoyltrifluoroacetonate), and methylene blue dye molecules are studied. Spectral features typical for the formation of core/shell QDs of the CdS/CdS:Eu3+ type are found. It is noted that the adsorption of the europium complex at the QD interfaces and the formation of QDs of the CdS/TGA/Eu3+ are probable. Spectral patterns that reveal nonradiative energy transfer from the recombination luminescence centers of CdS QDs to the Eu3+ ions in the CdS/CdS:Eu3+ and CdS/TGA/Eu3+ structures are obtained. This is manifested in quenching the recombination luminescence of QDs and in the ignition of the intracentric luminescence of Eu3+, which enhance with an increase in the concentration of the europium complex. When such structures are combined with methylene blue molecules, the half-width of the absorption spectra is found to increase by 10–15% with an unchanged position of the absorption band maximum. With an increase in the concentration of methylene blue molecules, decreases in the intensity of the recombination luminescence band of CdS QDs at a wavelength of 530 nm and in the luminescence intensity of Eu3+ ions and simultaneously the rise up of the fluorescence of methylene blue at a wavelength of about 675 nm are observed. At the same time, a decrease in the luminescence lifetime of the bands of QDs and europium ions are observed. It is concluded that the nonradiative excitation energy transfer from both the recombination luminescence centers and Eu3+ ions to methylene blue molecules takes place.  相似文献   

9.
The luminol-CdTe quantum dots (QDs) conjugates were prepared through the reaction between -NH2 and -COOH. The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, with different emission peaks) acceptors (CRET) was investigated. The luminescence of QDs in luminol-QDs conjugates in the process of CRET was influenced by the molar ratio of luminol/QDs. It could reach higher luminescence intensity while the luminol/QDs value was 1/1. Quantum yield of QDs and overlapping areas between the emission spectrum of luminol and adsorption spectrum of QDs played important roles in the CRET efficiency of luminol-QDs conjugates. The higher CRET efficiency (21.2%) was observed when the 540 nm QDs were used as acceptors. This work will offer helpful knowledge for the CRET studies based on QDs.  相似文献   

10.
Semiconductor quantum dots (QDs) exhibit intense luminescence and reproduce optical characteristics. Doping with metal ions has a positive effect on their properties. Introduction of QDs into polymer matrices leads to the formation of a required morphology of composites. There is a problem in synthesis of optically transparent polymer composites containing QDs of the А2В6 group that consists in the extremely low solubility of metal chalcogenides and most of their precursors in monomers. To solve this problem, we used colloidal synthesis. CdS QDs were synthesized by the method of appearing reagents in situ in methylmethacrylate (MMA). Doping with Ag+ ions was performed by adding a silver salt into the reaction mixture during the synthesis of CdS QDs. The PMMA/CdS:Ag luminescent polymer glasses were synthesized by radical block polymerization of MMA. The transparency of the composites at wavelengths exceeding 500 nm reaches 92% (5 mm). The luminescence excitation is related to the interband electron transitions in CdS crystals. Luminescence in the range of 500–600 nm is observed due to electron relaxation via a system of levels in the band gap of doped CdS crystals. The positions and intensities of the spectral bands depend on the Ag+ concentration, particle size, excitation wavelength, and other factors. The formation of Cd(Ag)S/Ag2S structures at Ag+ concentrations higher than 5.0 × 10–3 mol/L quenches the luminescence.  相似文献   

11.
Using the spectral methods of induced absorption, luminescence, and photostimulated luminescence flash, we have experimentally investigated processes of decay of electronic excitations in CdS colloidal quantum dots and in CdS/ZnS “core-shell” systems synthesized in gelatin by the sol-gel method. It has been shown that the decay of electronic excitations in colloidal quantum dots of this type is predominantly related to a fast localization of nonequilibrium charge carriers on surface defects and their subsequent recombination during times on the order of units and tens of picoseconds. The passage to core-shell systems eliminates, to a large extent, surface defects of the core, some of which are luminescence centers. However, upon using the sol-gel synthesis, a noticeable fraction of luminescence centers are formed in the interior of the CdS quantum dot, which, as well as in the case of CdS/ZnS systems, ensures localization of exciton, blocks its direct annihilation, and maintains recombination radiation.  相似文献   

12.
Experimental data are analyzed on the hopping transport of holes in two-dimensional layers of Ge/Si(001) quantum dots (QDs) under conditions of the long-range Coulomb interaction of charge carriers localized in QDs, when the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the parameters of hopping conduction significantly deviate from the predictions of the model of one-electron excitations in “Coulomb glasses.” Many-particle Coulomb correlations associated with the motion of holes localized in QDs play a decisive role in the processes of hopping charge transfer between QDs. These correlations lead to a substantial decrease in the Coulomb barriers for the tunneling of charge carriers.  相似文献   

13.
Particular features and quenching mechanisms of exciton luminescence of water-soluble nanocomposites that are formed as a result of the interaction of surface charged semiconductor quantum dots (QDs) CdSe/ZnS (d CdSe = 2.8 nm) and cationic porphyrins (H2TMPyrP4+ and ZnTMPyrP4+) have been studied theoretically and experimentally. It has been found that, in CdSe/ZnS??Porphyrin conjugates, there occurs long-range inductive resonance electronic excitation energy transfer from surface modified (with thioglycolic or mercaptoundecanoic acid) QDs to porphyrins, which is accompanied by quenching of the exciton luminescence of QDs and an increase in the fluorescence intensity of porphyrin. It has been shown that, when mercaptoundecanoic acid is used as a QD shell, the QD luminescence quenching efficiency by porphyrins follows the F?rster-Galanin theory and depends on the overlap integral between the CdSe/ZnS luminescence band and the absorption spectra of free-base porphyrin H2TMPyrP4+ and its metal complex ZnTMPyrP4+. It has been revealed that, as the QDs ? Zn-porphyrin intercenter distance decreases from 39.1 (mercaptoundecanoic acid) to 30.1), a considerable QD luminescence quenching is observed; however, the energy transfer efficiency substantially decreases, from 55% in the former case to 23% in the latter one. Based on the spectral-luminescent data and quantum-chemical calculations, it has been found that the chemical change of H2TMPyrP4+ in the structure of the complex with CdSe/ZnS QDs passivated by thioglycolic or mercaptoundecanoic acid is caused by the formation of a metal complex ZnTMPyrP4+. Based on calculations of the redox-potentials, it has been concluded that the low luminescence quantum yield of CdSe/ZnS QDs passivated by residues of mercaptocarboxylic acids S?(CH2) n COO? and its dependence on the number of CH2 groups are related to the possibility of photoinduced electron transfer from the HOMO of passivating molecules to QDs (QD* ? S?(CH2)nCOO? hole transfer). It has been shown that the quenching of the exciton luminescence of QDs in heterogeneous structures CdSe/ZnS(thioglycolic acid)??ZnTMPyrP4+, which is complementary to the energy transfer, can be caused by the photoinduced electron transfer that involves the participation of the LUMO of the ZnTMPyrP4+ molecule (QD* ? ZnTMPyrP4+).  相似文献   

14.
For microcrystals of Zn0.6Cd0.4S with adsorbed molecules of a number of organic dyes, we have observed sensitized anti-Stokes luminescence excited by radiation with wavelengths in the range 610–750 nm and flux density 1014–1015 photons/cm2·sec. The positions of the bands in the excitation spectra for such luminescence match those of the absorption spectra for the adsorbed dye molecules, which is evidence in favor of a cooperative mechanism for its appearance. We have shown that enhancement of the anti-Stokes luminescence is possible when silver atoms and few-atom clusters appear on the Zn0.6Cd0.4S surface in addition to the dye molecules. We hypothesize that its excitation in the latter case occurs as a result of two-photon optical transitions. These transitions occur sequentially, with transfer of an electron or the electronic excitation energy from the dye molecules to silver atoms and few-atom clusters adsorbed on the surface of Zn0.6Cd0.4S, creating deep localized states in the bandgap with photoionization energies 1.80–2.00 eV. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 617–621, September–October, 2007.  相似文献   

15.
We have analyzed the possibilities of using the phenomenon of photostimulated luminescence flash for optical diagnosing of energy levels of structural and impurity defects of semiconductor crystals and nanostructures. New data on the spectra of deep localized states associated with adsorbed few-atom clusters Zn n on the surface of ZnS; clusters Cd n , Cu n , and Ag n on the surface of CdS; and clusters Ag n on the surface of AgBr(I) have been presented, as well as results of investigation of photostimulated assembling processes of few-atom clusters on the surface of crystals using this phenomenon. We are the first to show the potential of the luminescence flash technique for studying the mutual arrangement of the levels of dye molecules and the bands of the crystal on the surface of which they are adsorbed, as well as of the spectra of localized states in colloidal CdS semiconductor quantum dots.  相似文献   

16.
Photoluminescent semiconductor nanocrystals, quantum dots (QDs), are nowadays one of the most promising materials for developing a new generation of fluorescent labels, new types of light-emitting devices and displays, flexible electronic components, and solar panels. In many areas the use of QDs is associated with an intense optical excitation, which, in the case of a prolonged exposure, often leads to changes in their optical characteristics. In the present work we examined how the method of preparation of quantum dot/polymethylmethacrylate (QD/PMMA) composite influenced the stability of the optical properties of QD inside the polymer matrix under irradiation by different laser harmonics in the UV (355 nm) and visible (532 nm) spectral regions. The composites were synthesized by spin-coating and radical polymerization methods. Experiments with the samples obtained by spin-coating showed that the properties of the QD/PMMA films remain almost constant at values of the radiation dose below ~10 fJ per particle. Irradiating the composites prepared by the radical polymerization method, we observed a monotonic increase in the luminescence quantum yield (QY) accompanied by an increase in the luminescence decay time regardless of the wavelength of the incident radiation. We assume that the observed difference in the optical properties of the samples under exposure to laser radiation is associated with the processes occurring during radical polymerization, in particular, with charge transfer from the radical particles inside QDs. The results of this study are important for understanding photophysical properties of composites on the basis of QDs, as well as for selection of the type of polymer and the composite synthesis method with quantum dots that would allow one to avoid the degradation of their luminescence.  相似文献   

17.
Brooke A. Timp  X.-Y. Zhu 《Surface science》2010,604(17-18):1335-1341
A number of solar energy conversion strategies depend on exciton dissociation across interfaces between semiconductor quantum dots (QDs) and other electron or hole conducting materials. A critical factor governing exciton dissociation and charge transfer in these systems is the alignment of electronic energy levels across the interface. We probe interfacial electronic energy alignment in a model system, sub-monolayer films of PbSe QDs adsorbed on single crystal ZnO(101?0) surfaces using ultraviolet photoemission spectroscopy. We establish electronic energy alignment as a function of quantum dot size and surface chemistry. We find that replacing insulating oleic-acid capping molecules on the QDs by the short hydrazine or ethanedithiol molecules results in pinning of the valence band maximum (VBM) of QDs to ZnO substrate states, independent of QD size. This is in contrast to similar measurements on TiO2(110) where the alignment of the PbSe QD VBM to that of the TiO2 substrate depends on QD size. We interpret these findings as indicative of strong electronic coupling of QDs with the ZnO surface but less with the TiO2 surface. Based on the measured energy alignment, we predict that electron injection from the 1se level in photo-excited PbSe QDs to ZnO can occur with small QDs (diameter ? = 3.4 nm), but energetically unfavorably for larger dots (? = 6.7 nm). In the latter, hot electrons above the 1se level are necessary for interfacial electron injection.  相似文献   

18.

The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton–plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton–plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton–plasmon interaction) in a metal–semiconductor hybrid nanosystem are elucidated, as well.

  相似文献   

19.
Here, we report the synthesis and characterization of CoFe2O4 doping Ag2S dendrimer-modified nanoparticles (CoFe2O4-Ag2S DMNs) in Cry1Ab protein detection and imaging. The near-infrared Ag2S quantum dots were first prepared by using the thermal decomposition method, followed by modification of the water-soluble quantum dots using the method of solvent evaporation and ligand exchange, and finally the fluorescent magnetic bifunctional nanoparticles were obtained by binding with CoFe2O4. As-prepared CoFe2O4-Ag2S DMNs were characterized by fluorescence (FL) spectroscopy and transmission electron microscopy (TEM). Results showed that Ag2S DMNs could sensitively detect Cry1Ab both in vitro and in vivo. In vitro, the enhanced FL intensity as a function of the concentration is notably consistent with the Langmuir binding isotherm equation in the range of 0–200 ng/mL of Cry1Ab proteins. The detection limit of this method was found to be 0.2 ng/mL. Meanwhile, the fluorescence wavelength was extended to the second near-infrared range (NIR-II, 1.0~1.4 μm), which enables in vivo imaging. This study highlights the importance of NIR QDs doping magnetic materials as a new method to trace Bacillus thuringiensis (Bt) in insects and their potential applications in in vivo NIR tissue imaging.  相似文献   

20.
We developed a novel method to assemble TiO2 nanorods conjugated with CdS quantum dots by L-cysteine molecular linker for type II semiconducting hybrid structure. The XRD patterns indicate that the CdS quantum dots perform the cubic phase structure, and TEM images show that CdS quantum dots are well dispersed on the surfaces of anatase TiO2 nanorods with little agglomeration. The UV-vis absorption spectra reveal the bandgap alignment in type II configuration between CdS QDs and TiO2 nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号