首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
研究了高密度聚乙烯(HDPE)/超高分子量聚乙烯(UHMWPE)、线性低密度聚乙烯(LLDPE)/UHMWPE、低密度聚乙烯(LDPE)/UHMWPE三种共混物的动态流变性能。从弹性模量、复数粘度、特征频率和松弛时间的对数线性加和性、Cole-Cole曲线、Han曲线以及时温等效原理的分析表明LDPE/UHMWPE共混物在熔体状态是相容的,而LLDPE/UHMWPE和HDPE/UHMWPE共混物在熔体状态下发生分相过程。  相似文献   

2.
用DSC和WAXD方法研究了高密度聚乙烯/聚(乙烯丙烯辛烯-1)(HDPE/EPO)共混体系的结晶性能。共混物的DSC曲线皆呈单峰,表明共混体系形成了共晶。晶胞参数a及结晶度随共混物组成而变,进一步证明HDPE/EPO共混体系的相容性.  相似文献   

3.
用DSC和WAXD方法研究了高密度聚乙烯/聚(乙烯丙烯辛烯-1)(HDPE/EPO)共混体系的结晶性能。共混物的DSC曲线皆呈单峰,表明共混体系形成了共晶。晶胞参数a及结晶度随共混物组成而变,进一步证明HDPE/EPO共混体系的相容性。  相似文献   

4.
含二烯丙基双酚A醚相容剂对HDPE/PC共混体系的影响   总被引:3,自引:0,他引:3  
用低密度聚乙烯接枝二烯丙基双酚A醚(LDPE g DBAE)作为高密度聚乙烯/聚碳酸酯(HDPE/PC)共混体系的增容剂,研究了其对HDPE/PC共混体系的影响.通过共混物形态观察、热力学性能测试和结晶性分析,发现LDPE g DBAE对HDPE/PC共混体系有良好的增容效果.并发现了增容剂在共混物中的最佳用量为10phr,提高增容剂的接枝率更有利于改善共混物的性能  相似文献   

5.
HDPE-g-GMA增容PC/UHMWPE共混体系的形态结构和动态流变性能   总被引:4,自引:0,他引:4  
HDPE-g-GMA增容PC/UHMWPE共混体系的形态结构和动态流变性能;聚碳酸酯; 超高分子量聚乙烯; 共混物; 增容; 动态流变  相似文献   

6.
EVA增容PP/HDPE共混体系的形态结构与性能   总被引:4,自引:0,他引:4  
采用乙烯-醋酸乙烯酯共聚物(EVA)作为聚丙烯(PP)/高密度聚乙烯(HDPE)共混体系的增容剂,通过冲击实验、拉伸实验、示差量热扫描仪(DSC)和扫描电镜(SEM),系统地研究了共混体系的性能与其形态结构之间的。结果表明,EVA是PP/HDPE共混物较好物增容剂,EVA可以使PP、HDPE的晶相结构受到一定程度的破坏,增加PP和HDPE的相容性,同时共混物的冲击韧性明显提高。  相似文献   

7.
超高分子量聚乙烯/聚丙烯共混体系流变行为及形态的研究汪晓东,励杭泉,金日光(北京化工大学高分子系,北京,100029)关键词共混合金,线性互穿网络,双连续相,网络增韧机理通常聚合物的增韧机理是在树脂中引人柔性链段[1]形成复合物(如橡塑共混物),这些...  相似文献   

8.
杨毓华  李三喜 《应用化学》1997,14(1):104-106
线性低密度聚乙烯/乙烯醋酸乙烯共聚物共混体系的相容性及性能杨毓华*白春霞花荣于李三喜(中国科学院长春应用化学研究所长春130022)(沈阳化工学院高分子科学与工程系沈阳)关键词线性低密度聚乙烯,乙烯醋酸乙烯共聚物,共混,相容性,DSC,WAXD,力...  相似文献   

9.
弹性体共混改性聚丙烯的增韧机理   总被引:10,自引:0,他引:10  
阐述了以聚丙烯(PP)/高密度聚乙烯(HDPE)为复合基体,苯乙烯-丁二烯-苯乙烯(SBS)为增韧剂经三元共混所得的性能优异的一类新材料.从三个层次(形貌结构转变、宏观力学响应和裂尖过程区演化)系统地探讨了其增韧机理.结果表明由形貌结构控制和对早期体膨胀变形抑制可造成裂尖平面应变区的超钝化从而达到增韧.  相似文献   

10.
高密度聚乙烯/超高分子量聚乙烯共混物高取向薄膜形态结构与力学性能的研究张伟广,赵勇,杨德才中国科学院长春应用化学研究所,高分子物理开放实验室,长春,130022)关键词HDPE、UHMWPE、共混物、形态结构、力学性能如何提高高分子材料抗张强度和模量...  相似文献   

11.
纳米SiO2增强NR/HDPE共混型热塑性弹性体的研究   总被引:10,自引:0,他引:10  
以动态硫化法制备纳米二氧化硅(SiO2)改性天然橡胶/高密度聚乙烯(NR/HDPE)共混型热塑性弹性体。研究了纳米SiO2对NR/HDPE弹性体力学、耐热变形、耐溶剂和热塑性能的影响,并用SEM分析了弹性体的断面形貌。结果表明:纳米SiO2通过细化交联NR分散相,改善了NR与HDPE的相容性,两相界面粘结强度明显提高。当纳米SiO2质量分数为0.03时,NR/HDPE弹性体的综合性能最好。  相似文献   

12.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Inorganic filler manufactured for incorporation into thermoplastic elastomers usually are surface treated with organic reagents in order to improve the interfacial adhesion between filler and the matrix. In the present paper, the effects of acrylic acid (AA) on tensile and morphology properties of wollastonite (WS) filled high density polyethylene (HDPE)/Natural Rubber (NR) composites were studied. The untreated and treated HDPE/NR/WS composites were melt-blending at 180 °C with rotor speed of 50 rpm for 10 minutes. The composites were tensile-tested according to ASTM D638 and the etched surfaces were observed using scanning electron microscope (SEM). Tensile strength and elongation at break of the compositesdecreased upon the addition of wollastonite, but Young's modulus improves. The results of this study showed that the treated composites are found to have better tensile properties than the untreated composites. The morphology of treated composite showed better interfacial interaction between HDPE/NR and wollastonite.  相似文献   

14.
Several techniques of polymer characterization and different ageing methods have been used with the aim of developing a simple, fast and reliable method to qualify commercial pipe-grade polyethylene samples, and possibly to evidence the presence of recycled PE within PE pipes. The results of the different techniques used have been compared with respect to their capability to evidence differences in the degradation rate of different HDPE samples (including virgin HDPE, HDPE pipes obtained from virgin HDPE and HDPE pipes that probably contain recycled HDPE). FT-IR, TGA and DSC were found unsuitable for this purpose but, on the contrary, MFI measurements have been found sensitive enough to evidence different degradation rates when a suitable combination of high temperature, oxygen, mechanical stresses and mixing time had been used for ageing the sample.  相似文献   

15.
The influence of fullerene (C60) on the thermal and thermal-oxidative degradation of high-density polyethylene (HDPE) was studied using non-isothermal thermogravimetric analysis under nitrogen (N2) and air atmosphere. Kinetic parameters of the degradation were evaluated using the Flynn–Wall–Ozawa method, which does not require the knowledge of the reaction mechanism. The results showed that the addition of C60 enhanced the thermal stability of HDPE and increased the activation energy both in N2 and air atmosphere and especially affected the initial stage of degradation. In N2, C60-trapped carbon-centered radical originated from the degradation of HDPE to improve the thermal stability and increase the activation energy. While in air, C60 trapped the alkyl radicals and alkyl peroxide radicals to inhibit the hydrogen abstraction (especially the initial stage of thermo-oxidative degradation) and form more stable species, which improved the thermal stability and increased the activation energy during the thermal degradation of HDPE. Comparing with that of pure HDPE, the changes of activation energy for HDPE/C60 nanocomposites were higher in air than in N2, especially in the initial stage.  相似文献   

16.
A study has been made of the effect of orientation on the oxidative degradation of poly(vinylchloride) (PVC), low density polyethylene (LDPE) and high density polyethylene (HDPE) under the influence of γ- and u.v.-radiation. The effect of drawing in PVC is to increase the rate of oxidative degradation; in LDPE and HDPE, this rate decreases (especially for HDPE) both under u.v. and γ-radiation.  相似文献   

17.
The present work is aimed at recycling plastic wastes economically and efficiently, for which pure high density polyethylene (HDPE) has been initially selected for the investigations. Thermogravimetric technique has been used to investigate, analyze and compare the thermal and catalytic degradation of HDPE. The catalytic degradation was investigated over the medium pore silicoaluminophosphate, SAPO-11 molecular sieve. The thermogravimetric evaluation was performed using 2–30 wt% catalyst, and the apparent activation energies for the thermal and catalytic polymer degradation were estimated using various iso-conversional methods. The apparent activation energy was found to be lower when SAPO-11 was used compared to the direct thermal degradation of HDPE. The activation energy and coke levels are comparable to the medium pore zeolite ZSM-5 and lower than the values obtained over large pore zeolites reported in literature.  相似文献   

18.
氧化镧对HDPE热氧化分解行为的影响   总被引:1,自引:0,他引:1  
聚合物改性是聚合物结构与性能研究中的一个重要领域,而稀土元素具有4f0-145dl-106s2的电子构型,由于4f轨道的特殊性和5d轨道的存在,稀土离子具有丰富的电子能级,离子半径较大,电荷较高,又有较强的络合能力,可对多种聚合物的热稳定性产生影响[1,7].  相似文献   

19.
The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
High density polyethylene (HDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) containing antioxidant additives at low or zero levels were extruded and blown moulded as films. An HDPE/LLDPE commercial blend containing a pro-oxidant additive (i.e., an oxo-biodegradable blend) was taken from the market as supermarket bag. These four polyolefin samples were exposed to natural weathering for one year during which their structure and thermal and mechanical properties were monitored. This study shows that the real durability of olefin polymers may be much shorter than centuries, as in less than one year the mechanical properties of all samples decreased virtually to zero, as a consequence of severe oxidative degradation, that resulted in substantial reduction in molar mass accompanied by a significant increase in content of carbonyl groups. PP and the oxo-bio HDPE/LLDPE blend degraded very rapidly, whereas HDPE and LLDPE degraded more slowly, but significantly in a few months. The main factors influencing the degradability were the frequency of tertiary carbon atoms in the chain and the presence of a pro-oxidant additive. The primary (sterically hindered phenol) and secondary (phosphite) antioxidant additives added to PP slowed but did not prevent rapid photo-oxidative degradation, and in HDPE and LLDPE the secondary antioxidant additive had little influence on the rate of abiotic degradation at the concentrations used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号