首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A three-dimensional compressible Direct Numerical Simulation (DNS) analysis has been carried out for head-on quenching of a statistically planar stoichiometric methane-air flame by an isothermal inert wall. A multi-step chemical mechanism for methane-air combustion is used for the purpose of detailed chemistry DNS. For head-on quenching of stoichiometric methane-air flames, the mass fractions of major reactant species such as methane and oxygen tend to vanish at the wall during flame quenching. The absence of \(\text {OH}\) at the wall gives rise to accumulation of carbon monoxide during flame quenching because \(\text {CO}\) cannot be oxidised anymore. Furthermore, it has been found that low-temperature reactions give rise to accumulation of \(\text {HO}_{2}\) and \(\mathrm {H}_{2}\mathrm {O}_{2}\) at the wall during flame quenching. Moreover, these low temperature reactions are responsible for non-zero heat release rate at the wall during flame-wall interaction. In order to perform an in-depth comparison between simple and detailed chemistry DNS results, a corresponding simulation has been carried out for the same turbulence parameters for a representative single-step Arrhenius type irreversible chemical mechanism. In the corresponding simple chemistry simulation, heat release rate vanishes once the flame reaches a threshold distance from the wall. The distributions of reaction progress variable c and non-dimensional temperature T are found to be identical to each other away from the wall for the simple chemistry simulation but this equality does not hold during head-on quenching. The inequality between c (defined based on \(\text {CH}_{4}\) mass fraction) and T holds both away from and close to the wall for the detailed chemistry simulation but it becomes particularly prominent in the near-wall region. The temporal evolutions of wall heat flux and wall Peclet number (i.e. normalised wall-normal distance of \(T = 0.9\) isosurface) for both simple and detailed chemistry laminar and turbulent cases have been found to be qualitatively similar. However, small differences have been observed in the numerical values of the maximum normalised wall heat flux magnitude \(\left ({\Phi }_{\max } \right )_{\mathrm {L}}\) and the minimum Peclet number \((Pe_{\min })_{\mathrm {L}}\) obtained from simple and detailed chemistry based laminar head-on quenching calculations. Detailed explanations have been provided for the observed differences in behaviours of \(\left ({\Phi }_{\max }\right )_{\mathrm {L}}\) and \((Pe_{\min })_{\mathrm {L}}\). The usual Flame Surface Density (FSD) and scalar dissipation rate (SDR) based reaction rate closures do not adequately predict the mean reaction rate of reaction progress variable in the near-wall region for both simple and detailed chemistry simulations. It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.  相似文献   

2.
The influences of fuel Lewis number Le F on localised forced ignition of inhomogeneous mixtures are analysed using three-dimensional compressible Direct Numerical Simulations (DNS) of turbulent mixing layers for Le F  = 0.8, 1.0 and 1.2 and a range of different root-mean-square turbulent velocity fluctuation u′ values. For all Le F cases a tribrachial flame has been observed in case of successful ignition. However, the lean premixed branch tends to merge with the diffusion flame on the stoichiometric mixture fraction isosurface at later stages of the flame evolution. It has been observed that the maximum values of temperature and reaction rate increase with decreasing Le F during the period of external energy addition. Moreover, Le F is found to have a significant effect on the behaviours of mean temperature and fuel reaction rate magnitude conditional on mixture fraction values. It is also found that reaction rate and mixture fraction gradient magnitude \(\vert \nabla \xi \vert \) are negatively correlated at the most reactive region for all values of Le F explored. The probability of finding high values of \(\vert \nabla \xi \vert \) increases with increasing Le F . For a given value of u′, the extent of burning decreases with increasing Le F . A moderate increase in u′ gives rise to an increase in the extent of burning for Le F  = 0.8 and 1.0, which starts to decrease with further increases in u′. For Le F  = 1.2, the extent of burning decreases monotonically with increasing u′. The extent of edge flame propagation on the stoichiometric mixture fraction ξ = ξ st isosurface is characterised by the probability of finding burned gas on this isosurface, which decreases with increasing u′ and Le F . It has been found that it is easier to obtain self-sustained combustion following localised forced ignition in case of inhomogeneous mixtures than that in the case of homogeneous mixtures with the same energy input, energy deposition duration when the ignition centre is placed at the stoichiometric mixture. The difficultly to sustain combustion unaided by external energy addition in homogeneous mixture is particularly prevalent in the case of Le F  = 1.2.  相似文献   

3.
4.
The aim of this research work is to perform high quality direct numerical simulations (DNS) of a simplified single phase pressurized thermal shock (PTS) scenario with and without buoyancy effects. In that context, the objectives of this paper are (i) to present the road towards the DNS of a PTS design without buoyancy effects and (ii) to demonstrate that the code NEK5000 is adequate for true DNS analyses. This DNS of the PTS design will serve as a reference to validate low order CFD approaches. The higher order spectral element code NEK5000 is selected to perform the high quality DNS computations. The capabilities of this code, in order to perform the DNS for PTS like geometries, have been extensively assessed for a well-known turbulent channel flow configuration with Reτ =?180 (turbulent Reynolds number based on the wall friction velocity). Different numerical parameters of NEK5000 have been thoroughly tested and their influence has been studied to obtain high quality turbulence statistics. This assessment of NEK5000 is further extended for the application of highly skewed hexahedral (non-orthogonal) meshes in a turbulent channel flow. The obtained results have shown that NEK5000 is capable of producing high quality DNS solution for a PTS like complex flow configuration for skewed elements (meshes) up to 60 degrees. Finally, this tested numerical framework is adopted to perform the targeted DNS computations of the simplified PTS design.  相似文献   

5.
Direct numerical simulations of Taylor-Couette flow from Re= 8000 to 25000 have been conducted to investigate changes of turbulence statistics in the transition of the Reynolds number dependency of the mean torque near Re= 10000. The velocity fluctuations are decomposed into the contributions of the Taylor vortex and remaining turbulent fluctuations. Significant Reynolds number dependencies of these components are observed in the radial profiles of the Reynolds stress and the transmission of the mean torque. The contributions of Taylor vortex and turbulent components in the net amount of mean torque are evaluated. The Taylor vortex component is overtaken by the turbulent counterpart around Re= 15000 when they are defined as the azimuthally averaged component and the remnants. The results show that the torque transition can be explained by the competition between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components.  相似文献   

6.
In the present work we describe how turbulent skin-friction drag reduction obtained through near-wall turbulence manipulation modifies the spectral content of turbulent fluctuations and Reynolds shear stress with focus on the largest scales. Direct Numerical Simulations (DNS) of turbulent channels up to Re τ = 1000 are performed in which drag reduction is achieved either via artificially removing wall-normal turbulent fluctuations in the vicinity of the wall or via streamwise-travelling waves of spanwise wall velocity. This near-wall turbulence manipulation is shown to modify turbulent spectra in a broad range of scales throughout the whole channel. Above the buffer layer, the observed changes can be predicted, exploiting the vertical shift of the logarithmic portion of the mean streamwise velocity profile, which is a classic performance measure for wall roughness or drag-reducing riblets. A simple model is developed for predicting the large-scale contribution to turbulent fluctuation and Reynolds shear stress spectra in drag-reduced turbulent channels in which a flow control acts at the wall. Any drag-reducing control that successfully interacts with large scales should deviate from the predictions of the present model, making it a useful benchmark for assessing the capability of a control to affect large scales directly.  相似文献   

7.
The influences of fuel Lewis number LeF on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with LeF ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ?= 0.2, 0.4 and 0.6) and the Taylor micro-scale l? of equivalence ratio ? variation (i.e. l?/lf= 2.1, 5.5 and 8.3 with lf being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ? and l?/lf for global mean equivalence ratio 〈?〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing LeF during the period of external energy deposition. The initial values of LeF, u/Sb(?=1), ? and l?/lf have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u/Sb(?=1), the extent of burning decreases with increasing LeF. An increase in u leads to a monotonic reduction in the burned gas mass for all values of LeF in all stratified mixture cases but an opposite trend is observed for the LeF=0.8 homogeneous mixture. It has been found that an increase in ? has adverse effects on the burned gas mass, whereas the effects of l?/lf on the extent of burning are non-monotonic and dependent on ? and LeF. Detailed physical explanations have been provided for the observed LeF, u/Sb(?=1), ? and l?/lf dependences.  相似文献   

8.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

9.
In this paper, the Spectral-Element Dynamic Model (SEDM), suited for Large-Eddy Simulation (LES) using Discontinuous Finite Element Methods (DFEM), is assessed using unstructured meshes. Five test cases of increasing complexity are considered, namely, the Taylor-Green vortex at Re =?5000, the turbulent channel flow at Reτ =?587, the circular cylinder in cross-flow at ReD =?3900, the square cylinder in cross-flow at ReD =?22400 and the channel with periodic constrictions at Reh =?10595. Various discretization parameters such as the grid spacing, polynomial degree and numerical flux are assessed and very accurate results are reported in all cases. This consistency in the results demonstrates the versatility of the SEDM approach and its ability to gage the actual resolution and quality of the mesh and, accordingly, to introduce an amount of sub-grid dissipation which is adapted to the spatial discretization considered.  相似文献   

10.
In this work we study the turbulence modulation in a viscosity-stratified two-phase flow using Direct Numerical Simulation (DNS) of turbulence and the Phase Field Method (PFM) to simulate the interfacial phenomena. Specifically we consider the case of two immiscible fluid layers driven in a closed rectangular channel by an imposed mean pressure gradient. The present problem, which may mimic the behaviour of an oil flowing under a thin layer of different oil, thickness ratio h2/h1 =?9, is described by three main flow parameters: the shear Reynolds number Re τ (which quantifies the importance of inertia compared to viscous effects), the Weber number We (which quantifies surface tension effects) and the viscosity ratio λ = ν1/ν2 between the two fluids. For this first study, the density ratio of the two fluid layers is the same (ρ2 = ρ1), we keep Re τ and We constant, but we consider three different values for the viscosity ratio: λ =?1, λ =?0.875 and λ =?0.75. Compared to a single phase flow at the same shear Reynolds number (Re τ =?100), in the two phase flow case we observe a decrease of the wall-shear stress and a strong turbulence modulation in particular in the proximity of the interface. Interestingly, we observe that the modulation of turbulence by the liquid-liquid interface extends up to the top wall (i.e. the closest to the interface) and produces local shear stress inversions and flow recirculation regions. The observed results depend primarily on the interface deformability and on the viscosity ratio between the two fluids (λ).  相似文献   

11.
12.
The effects of global Lewis number Le on the statistical behaviour of the unclosed terms in the transport equation of the Favre-filtered scalar dissipation rate (SDR) Ñ c have been analysed using a Direct Numerical Simulation (DNS) database of freely propagating statistically planer turbulent premixed flames with Le ranging from 0.34 to 1.2. The DNS data has been explicitly filtered to analyse the statistical behaviour of the unclosed terms in the SDR transport equation arising from turbulent transport T 1, density variation due to heat release T 2, scalar-turbulence interaction T 3, reaction rate gradient T 4, molecular dissipation (?D 2) and diffusivity gradients f(D) in the context of Large Eddy Simulations (LES). It Le has significant effects on the magnitudes of T 1, T 2, T 3, T 4, (?D 2) and f(D). Moreover, both qualitative and quantitative behaviours of the unclosed terms T 1, T 2, T 3, T 4, (?D 2) and f(D) are found to be significantly affected by the LES filter width Δ, which have been explained based on a detailed scaling analysis. Both scaling analysis and DNS data suggest that T 2, T 3, T 4, (?D 2) and f(D) remain leading order contributors to the SDR \(\tilde {{N}}_{c} \) transport for LES. The scaling estimates of leading order contributors to the SDR \(\tilde {{N}}_{c} \) transport has been utilised to discuss the possibility of extending an existing SDR model for Reynolds Averaged Navier Stokes (RANS) simulation for SDR \(\tilde {{N}}_{c} \) closure in the context of LES of turbulent premixed combustion.  相似文献   

13.
In order to experimentally study whether or not the density ratio σ substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S L = 0.36 m/s, but substantially different σ were designed using (i) preheating from T u = 298 to 423 K in order to increase S L , but to decrease σ, and (ii) dilution with nitrogen in order to further decrease σ and to reduce S L back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius \(\bar {R}_{f}\left (t \right )\) and flame displacement speed \(S_{t}=\sigma ^{-1}{d\bar {R}_{f}} \left / \right . {dt}\) with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity \(u^{\prime }\) by changing the fan frequency. In this study, \(u^{\prime }\) was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T u , and six different \(u^{\prime })\), five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S t . Moreover, the flame displacement speeds measured at u′/S L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher σ.  相似文献   

14.
A direct numerical simulation database of the flow around a NACA4412 wing section at R e c = 400,000 and 5° angle of attack (Hosseini et al. Int. J. Heat Fluid Flow 61, 117–128, 2016), obtained with the spectral-element code Nek5000, is analyzed. The Clauser pressure-gradient parameter β ranges from ? 0 and 85 on the suction side, and from 0 to ? 0.25 on the pressure side of the wing. The maximum R e ?? and R e τ values are around 2,800 and 373 on the suction side, respectively, whereas on the pressure side these values are 818 and 346. Comparisons between the suction side with zero-pressure-gradient turbulent boundary layer data show larger values of the shape factor and a lower skin friction, both connected with the fact that the adverse pressure gradient present on the suction side of the wing increases the wall-normal convection. The adverse-pressure-gradient boundary layer also exhibits a more prominent wake region, the development of an outer peak in the Reynolds-stress tensor components, and increased production and dissipation across the boundary layer. All these effects are connected with the fact that the large-scale motions of the flow become relatively more intense due to the adverse pressure gradient, as apparent from spanwise premultiplied power-spectral density maps. The emergence of an outer spectral peak is observed at β values of around 4 for λ z ? 0.65δ 99, closer to the wall than the spectral outer peak observed in zero-pressure-gradient turbulent boundary layers at higher R e ?? . The effect of the slight favorable pressure gradient present on the pressure side of the wing is opposite the one of the adverse pressure gradient, leading to less energetic outer-layer structures.  相似文献   

15.
The goal of this study is to present a first step towards establishing criteria aimed at assessing whether a particular adverse-pressure-gradient (APG) turbulent boundary layer (TBL) can be considered well-behaved, i.e., whether it is independent of the inflow conditions and is exempt of numerical or experimental artifacts. To this end, we analyzed several high-quality datasets, including in-house numerical databases of APG TBLs developing over flat-plates and the suction side of a wing section, and five studies available in the literature. Due to the impact of the flow history on the particular state of the boundary layer, we developed three criteria of convergence to well-behaved conditions, to be used depending on the particular case under study. (i) In the first criterion, we develop empirical correlations defining the R e ?? -evolution of the skin-friction coefficient and the shape factor in APG TBLs with constant values of the Clauser pressure-gradient parameter β = 1 and 2 (note that β = δ ?/τ w dP e /dx, where δ ? is the displacement thickness, τ w the wall-shear stress and dP e /dx the streamwise pressure gradient). (ii) In the second one, we propose a predictive method to obtain the skin-friction curve corresponding to an APG TBL subjected to any streamwise evolution of β, based only on data from zero-pressure-gradient TBLs. (iii) The third method relies on the diagnostic-plot concept modified with the shape factor, which scales APG TBLs subjected to a wide range of pressure-gradient conditions. These three criteria allow to ensure the correct flow development of a particular TBL, and thus to separate history and pressure-gradient effects in the analysis.  相似文献   

16.
The development of the thermo-viscous fingering instability of miscible displacements in homogeneous porous media is examined. In this first part of the study dealing with stability analysis, the basic equations and the parameters governing the problem in a rectilinear geometry are developed. An exponential dependence of viscosity on temperature and concentration is represented by two parameters, thermal mobility ratio β T and a solutal mobility ratio β C , respectively. Other parameters involved are the Lewis number Le and a thermal-lag coefficient λ. The governing equations are linearized and solved to obtain instability characteristics using either a quasi-steady-state approximation (QSSA) or initial value calculations (IVC). Exact analytical solutions are also obtained for very weakly diffusing systems. Using the QSSA approach, it was found that an increase in thermal mobility ratio β T is seen to enhance the instability for fixed β C , Le and λ. For fixed β C and β T , a decrease in the thermal-lag coefficient and/or an increase in the Lewis number always decrease the instability. Moreover, strong thermal diffusion at large Le as well as enhanced redistribution of heat between the solid and fluid phases at small λ is seen to alleviate the destabilizing effects of positive β T . Consequently, the instability gets strictly dominated by the solutal front. The linear stability analysis using IVC approach leads to conclusions similar to the QSSA approach except for the case of large Le and unity λ flow where the instability is seen to get even less pronounced than in the case of a reference isothermal flow of the same β C , but β T  = 0. At practically, small value of λ, however, the instability ultimately approaches that due to β C only.  相似文献   

17.
The correlation coefficient RuT between the streamwise velocity and temperature is investigated for the case of canonical shock-turbulence interaction, motivated by the fact that this correlation is an important component in compressible turbulence models. The variation of RuT with the Mach number, the turbulent Mach number, and the Reynolds number is predicted using linear inviscid theory and compared to data from DNS. The contributions from the individual Kovasznay modes are quantified. At low Mach numbers, the peak post-shock RuT is determined by the acoustic mode, which is correctly predicted by the linear theory. At high Mach numbers, it is determined primarily by the vorticity and entropy modes, which are strongly affected by nonlinear and viscous effects, and thus less well predicted by the linear theory.  相似文献   

18.
A well-resolved large eddy simulation (LES) of a large-eddy break-up (LEBU) device in a spatially evolving turbulent boundary layer is performed with, Reynolds number, based on free-stream velocity and momentum-loss thickness, of R e θ ≈ 4300. The implementation of the LEBU is via an immersed boundary method. The LEBU is positioned at a wall-normal distance of 0.8 δ (δ denoting the local boundary layer thickness at the location of the LEBU) from the wall. The LEBU acts to delay the growth of the turbulent boundary layer and produces global skin friction reduction beyond 180δ downstream of the LEBU, with a peak local skin friction reduction of approximately 12 %. However, no net drag reduction is found when accounting for the device drag of the LEBU in accordance with the towing tank experiments by Sahlin et al. (Phys. Fluids 31, 2814, 1988). Further investigation is performed on the interactions of high and low momentum bulges with the LEBU and the corresponding output is analysed, showing a ‘break-up’ of these large momentum bulges downstream of the LEBU. In addition, results from the spanwise energy spectra show consistent reduction in energy at spanwise length scales for \(\lambda _{z}^{+} > 1000\) independent of streamwise and wall-normal location when compared to the corresponding turbulent boundary layer without LEBU.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号