首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an optimal control problem for parabolic variational inequalities with delays and state constraint is investigated and the necessary conditions for optimal controls are derived.  相似文献   

2.
This paper deals with the optimal control problem of an ordinary differential equation with several pure state constraints, of arbitrary orders, as well as mixed control-state constraints. We assume (i) the control to be continuous and the strengthened Legendre–Clebsch condition to hold, and (ii) a linear independence condition of the active constraints at their respective order to hold. We give a complete analysis of the smoothness and junction conditions of the control and of the constraints multipliers. This allows us to obtain, when there are finitely many nontangential junction points, a theory of no-gap second-order optimality conditions and a characterization of the well-posedness of the shooting algorithm. These results generalize those obtained in the case of a scalar-valued state constraint and a scalar-valued control.  相似文献   

3.
The optimal control of unsteady Burgers equation without constraints and with control constraints are solved using the high-level modelling and simulation package COMSOL Multiphysics. Using the first-order optimality conditions, projection and semi-smooth Newton methods are applied for solving the optimality system. The optimality system is solved numerically using the classical iterative approach by integrating the state equation forward in time and the adjoint equation backward in time using the gradient method and considering the optimality system in the space-time cylinder as an elliptic equation and solving it adaptively. The equivalence of the optimality system to the elliptic partial differential equation (PDE) is shown by transforming the Burgers equation by the Cole-Hopf transformation to a linear diffusion type equation. Numerical results obtained with adaptive and nonadaptive elliptic solvers of COMSOL Multiphysics are presented both for the unconstrained and the control constrained case.  相似文献   

4.
We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual active set strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner.We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.  相似文献   

5.
Summary A method for approximating the optimal control and the optimal state for a class of distributed control problems governed by variational inequalities is given. It uses a Rayleigh-Ritz-Galerkin scheme, regularising techniques and a gradient algorithm. A numerical example is given.  相似文献   

6.
In this paper we derive the first and second variations for a nonlinear time scale optimal control problem with control and state-endpoints equality constraints. Using the first variation, a first order necessary condition for weak local optimality is obtained under the form of a weak maximum principle generalizing the Dubois–Reymond Lemma to the optimal control setting and time scales. A second order necessary condition in terms of the accessory problem is derived by using the nonnegativity of the second variation at all admissible directions. The control problem is studied under a controllability assumption, and with or without the shift in the state variable. These two forms of the problem are shown to be equivalent.  相似文献   

7.
In this paper we first derive the verification theorem for nonlinear optimal control problems over time scales. That is, we show that the value function is the only solution of the Hamilton-Jacobi equation, in which the minimum is attained at an optimal feedback controller. Applications to the linear-quadratic regulator problem (LQR problem) gives a feedback optimal controller form in terms of the solution of a generalized time scale Riccati equation, and that every optimal solution of the LQR problem must take that form. A connection of the newly obtained Riccati equation with the traditional one is established. Problems with shift in the state variable are also considered. As an important tool for the latter theory we obtain a new formula for the chain rule on time scales. Finally, the corresponding LQR problem with shift in the state variable is analyzed and the results are related to previous ones.  相似文献   

8.
In this paper we report new results on the regularity of optimal controls for dynamic optimization problems with functional inequality state constraints, a convex time-dependent control constraint and a coercive cost function. Recently, it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition, that requires linear independence merely with respect to non-negative weighting parameters, provided the control constraint set is independent of the time variable. We show that, if the control constraint set, regarded as a time-dependent multifunction, is merely Lipschitz continuous with respect to the time variable, then optimal controls can fail to be Lipschitz continuous. In these circumstances, however, a weaker Hölder continuity-like regularity property can be established. On the other hand, Lipschitz continuity of optimal controls is guaranteed for time-varying control sets under a positive linear independence hypothesis, when the control constraint sets are described, at each time, by a finite collection of functional inequalities.  相似文献   

9.
We consider a nonlinear antiplane problem which models the deformation of an elastic cylindrical body in frictional contact with a rigid foundation. The contact is modelled with Tresca’s law of dry friction in which the friction bound is slip dependent.The aim of this article is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. The existence of at least one optimal control is proved. Next we introduce a regularized problem, depending on a small parameter ρ, and we study the convergence of the optimal controls when ρ tends to zero. An optimality condition is delivered for the regularized problem.  相似文献   

10.
The paper concerns optimal control of discontinuous differential inclusions of the normal cone type governed by a generalized version of the Moreau sweeping process with control functions acting in both nonconvex moving sets and additive perturbations. This is a new class of optimal control problems in comparison with previously considered counterparts where the controlled sweeping sets are described by convex polyhedra. Besides a theoretical interest, a major motivation for our study of such challenging optimal control problems with intrinsic state constraints comes from the application to the crowd motion model in a practically adequate planar setting with nonconvex but prox-regular sweeping sets. Based on a constructive discrete approximation approach and advanced tools of first-order and second-order variational analysis and generalized differentiation, we establish the strong convergence of discrete optimal solutions and derive a complete set of necessary optimality conditions for discrete-time and continuous-time sweeping control systems that are expressed entirely via the problem data.  相似文献   

11.
Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control representing laser pulses are developed. The purpose of this external field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.  相似文献   

12.
We give a new computational method to obtain symmetries of ordinary differential equations. The proposed approach appears as an extension of a recent algorithm to compute variational symmetries of optimal control problems [P.D.F. Gouveia, D.F.M. Torres, Automatic computation of conservation laws in the calculus of variations and optimal control, Comput. Methods Appl. Math. 5 (4) (2005) 387-409], and is based on the resolution of a first order linear PDE that arises as a necessary and sufficient condition of invariance for abnormal optimal control problems. A computer algebra procedure is developed, which permits one to obtain ODE symmetries by the proposed method. Examples are given, and results compared with those obtained by previous available methods.  相似文献   

13.
We consider an elliptic optimal control problem with control constraints and pointwise bounds on the gradient of the state. We present a tailored finite element approximation to this optimal control problem, where the cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of the lowest order Raviart–Thomas mixed finite element. Pointwise bounds on the gradient variable are enforced in the elements of the triangulation. Controls are not discretized. Error bounds for control and state are obtained in two and three space dimensions. A numerical example confirms our analytical findings.  相似文献   

14.
Fishways are the main type of hydraulic devices currently used to facilitate migration of fish past obstructions (dams, waterfalls, rapids,…rapids,) in rivers. In this paper we present a mathematical formulation of an optimal control problem related to the optimal management of a vertical slot fishway, where the state system is given by the shallow water equations, the control is the flux of inflow water, and the cost function reflects the need of rest areas for fish and of a water velocity suitable for fish leaping and swimming capabilities. We give a first-order optimality condition for characterizing the optimal solutions of this problem. From a numerical point of view, we use a characteristic-Galerkin method for solving the shallow water equations, and we use an optimization algorithm for the computation of the optimal control. Finally, we present numerical results obtained for the realistic case of a standard nine pools fishway.  相似文献   

15.
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented. Received February 10, 2000 / final version received July 21, 2000?Published online November 8, 2000  相似文献   

16.
This paper deals with elliptic optimal control problems for which the control function is constrained to assume values in {0, 1}. Based on an appropriate formulation of the optimality system, a semismooth Newton method is proposed for the solution. Convergence results are proved, and some numerical tests illustrate the efficiency of the method.  相似文献   

17.
By means of an additional substitution a parabolic control problem with some nonlinear boundary condition will be decoupled into some control problem with linear parabolic state equations and an appropriate nonlinear mapping. This separation allows the use of efficient techniques e.g. Fourier methods, to determine the solution of linear parabolic state equations. Essential properties of the mapping used in the transformation are studied. Further, the application of piecewise constant discretizations of the controls in connection with the proposed splitting is discussed.  相似文献   

18.
Optimal control for a system consistent of the viscosity dependent Stokes equations coupled with a transport equation for the viscosity is studied. Motivated by a lack of sufficient regularity of the adjoint equations, artificial diffusion is introduced to the transport equation. The asymptotic behavior of the regularized system is investigated. Optimality conditions for the regularized optimal control problems are obtained and again the asymptotic behavior is analyzed. The lack of uniqueness of solutions to the underlying system is another source of difficulties for the problem under investigation.  相似文献   

19.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

20.
This work is devoted to the numerical resolution of an optimal control problem that arises in the management of a reservoir for the remediation of a polluted river section. By using mathematical modeling and optimal control techniques we set the mathematical formulation of the problem (as a hyperbolic optimal control problem with control constraints), and obtain a fully discretized problem. Finally, we propose a gradient-free method to solve it, and present realistic numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号