首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Photoreactive particle was prepared by graft copolymerization of 1,9‐nonandioldimethacrylate (NDMA) onto deproteinized natural rubber (DPNR) particles in latex stage. First, NDMA was mixed with α‐cyclodextrin (α‐CD) as a coupling agent to form an inclusion complex to stabilize a carbon–carbon double bond of NDMA as a bifunctional monomer. Second, the inclusion complex was graft‐copolymerized onto natural rubber (NR) in latex stage with potassium persulfate (KPS) as an initiator, after deproteinization with urea in the presence of surfactant. A terminal vinyl group of NDMA was used for the graft copolymerization, while the other remained in the resulting polymer, due to the coupling effect of the α‐CD. The products, after washing α‐CD out, were characterized by FTIR, X‐ray diffraction (XRD), 1H NMR and solid‐state 13C NMR measurements. The amount of residual carbon–carbon double bond after graft copolymerization was investigated in relation to the amount of rubber and reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4111–4118, 2009  相似文献   

2.
The catalytic effects of 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD) with 2‐methylimidazole‐intercalated α‐zirconium phosphate (α‐ZrP?2MIm) in the reaction of glycidyl phenyl ether (GPE) and hexahydro‐4‐methylphthalic anhydride (MHHPA) were investigated. The reaction did not proceed within 1 h at 60 °C. On increasing the temperature to 100 °C, the conversion reached 93% for 1 h. Without the addition of TBD, the conversion was 67% at 100 °C for 1 h. Under storage conditions at 25 °C for 7 days, the conversion of GPE was only 18%. The curing behavior of 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA) and MHHPA in the presence of TBD with α‐ZrP?2MIm was evaluated by differential scanning calorimetry. The addition of TBD with α‐ZrP?2MIm as a latent thermal initiator, the storage stability was maintained and the reaction proceeded rapidly under heating conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2557–2561  相似文献   

3.
The oxidative copolymerization of indene with styrene, α‐methylstyrene, and α‐phenylstyrene is investigated. Copolyperoxides of different compositions have been synthesized by the free‐radical‐initiated oxidative copolymerization of indene with vinyl monomers. The compositions of the copolyperoxides obtained from the 1H and 13C NMR spectra have been used to determine the reactivity ratios of the monomers. The reactivity ratios indicate that indene forms an ideal copolyperoxide with styrene and α‐methylstyrene and alternating copolyperoxides with α‐phenylstyrene. Thermal degradation studies via differential scanning calorimetry and electron‐impact mass spectroscopy support the alternating peroxide units in the copolyperoxide chain. The activation energy for thermal degradation suggests that the degradation is dependent on the dissociation of the peroxide (? O? O? ) bonds in the backbone of the copolyperoxide chain. Their flexibility has been examined in terms of the glass‐transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2004–2017, 2002  相似文献   

4.
Stable high‐solids‐content methyl methacrylate/butylacrylate latexes with small particle sizes (in the range of 150–180 nm) were obtained with a nonionic polymerizable surfactant (surfmer). Three percent of surfmer with respect to monomer was proven to be enough for the stabilization of the latexes. The influence of different operational variables on the stabilization of the final latex was analyzed, and the conditions needed to obtain coagulum‐free latex were assessed. The inorganic potassium persulfate/sodium metabisulfite initiator system provided better stability than the organic tert‐butyl hydroperoxide/ascorbic acid as a result of the end groups. In addition, the feeding of acrylic acid during the second half of the polymerization improved the stability of the final latex. The reduction of the feeding time was effective in the stabilization. Proof of the surfmer incorporation into the particles is presented. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1552–1559, 2002  相似文献   

5.
Herein we report on the umpolung of Morita–Baylis–Hillman type intermediates and application to the α‐functionalization of enone C?H bonds. This reaction gives direct access to α‐chloro‐enones, 1,2‐diketones and α‐tosyloxy‐enones. The latter are important intermediates for cross‐coupling reaction and, to the best of our knowledge, cannot be made in a single step from enones in any other way. The proposed mechanism is supported by spectroscopic studies. The key initial step involves conjugate attack of an amine (DABCO or pyridine), likely assisted by hypervalent iodine acting as a Lewis acid leading to formation of an electrophilic β‐ammonium‐enolonium species. Nucleophilic attack by acetate, tosylate, or chloride anion is followed by base induced elimination of the ammonium species to give the noted products. Hydrolysis of α‐acetoxy‐enones lead to formation of 1,2‐diketones. The α‐tosyl‐enones participate in Negishi coupling reactions under standard conditions.  相似文献   

6.
Symmetrical and unsymmetrical α‐diazo‐β‐diketones undergo thermal Wolff rearrangements to generate α‐carbonylketenes to participate as dienes in Diels–Alder reactions with 4‐aryl‐2‐methyl‐2,3‐dihydro‐1,5‐benzothia/diazepines to give, whereapplicable, regiospecific cycloadducts, 4a,5,6,12‐tetrahydro‐1H/1H,7H‐1,3‐oxazino[3,2‐d][1,5]benzo‐thia/diazepin‐1‐ones. A mechanism of formation of the regiospecific cycloadducts is suggested. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 35–40, 1999  相似文献   

7.
The photopolymerization of acrylic‐based adhesives has been studied by Fourier transform infrared and fluorescence analysis in real time. Real‐time infrared spectroscopy reveals the influence of the nature of the photoinitiator on the kinetics of the reaction. Furthermore, the incident light intensity dependence of the polymerization rate shows that primary radical termination is the predominant mechanism during the initial stages of the curing of the acrylic system with bis(2,4,6‐trimethylbenzoyl) phenyl phosphine oxide (TMBAPO) as a photoinitiator. The fluorescence intensity of selected probes increases during the ultraviolet curing of the adhesive, sensing microenvironmental viscosity changes. Depending on the nature of the photoinitiator, different fluorescence–conversion curves are observed. For TMBAPO, the fluorescence increases more slowly during the initial stage because of the delay in the gel effect induced by primary radical termination. Mechanical tests have been carried out to determine the shear modulus over the course of the acrylic adhesive ultraviolet curing. In an attempt to extend the applications of the fluorescence probe method, we have undertaken comparisons between the fluorescence changes and shear modulus. Similar features in both curves confirm the feasibility of the fluorescence method for providing information about microstructural changes during network formation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4236–4244, 2002  相似文献   

8.
2,6‐Dimethyl‐5‐methylene‐1,3‐dioxa‐4‐one (DMDO), a cyclic acrylate possessing acetal–ester linkage, was obtained as a mixture of cis‐ and trans‐isomers (95:5) from Baylis–Hillman reaction of an aryl acrylate. The radical and anionic polymerizations of DMDO yielded the corresponding vinyl polymers without any side reactions such as cleavage of the acetal–ester linkage. The polymerization behaviors were significantly different from that of the acyclic acrylate, α‐(hydroxymethyl)acrylic acid, which was expected inactive against polymerization due to the steric hindrance around the vinylidene group by the α‐substituent. The acetal–ester linkage of the obtained polymer ( P1 ) was completely cleaved via acid hydrolysis to afford a water soluble polymer, P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 955–961  相似文献   

9.
We report the ring‐opening homopolymerization of α‐allyl(valerolactone), compound 2 , and its copolymerization with ε‐caprolactone and δ‐valerolactone using stannous(II) catalysis. Although the polymerization of substituted δ‐valerolactones has received little attention for the preparation of functional polyesters, we found that compound 2 may be incorporated in controllable amounts into copolymers with other lactones, or simply homopolymerized to give a highly functionalized, novel poly(valerolactone). The presence of the pendant allyl substituent had a substantial impact on the thermal properties of these materials relative to conventional polyesters prepared from lactones, and most of the polymers presented here are liquids at room temperature. Dihydroxylation of the pendant allyl groups gave polyesters with increased hydrophilicity that degraded more or less rapidly depending on their extent of functionality. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1983–1990, 2002  相似文献   

10.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

11.
The synthesis of a new compound, 2‐[(4‐bromomethyl)phenyl]‐4,5‐dihydro‐4,4‐dimethyloxazole ( 1 ), and its utility in the synthesis of oxazoline‐functionalized polystyrene by atom transfer radical polymerization (ATRP) methods are described. Aromatic oxazolyl‐functionalized polymers were prepared by the ATRP of styrene, initiated by ( 1 ) in the presence of copper(I) bromide/2,2′‐bipyridyl catalyst system, to afford the corresponding α‐oxazolyl‐functionalized polystyrene ( 2 ). The polymerization proceeded via a controlled free radical polymerization process to produce the corresponding α‐oxazolyl‐functionalized polymers with predictable number‐average molecular weights, narrow molecular weight distributions in high‐initiator efficiency reactions. Post‐ATRP chain end modification of α‐oxazolyl‐functionalized polystyrene ( 2 ) to form the corresponding α‐carboxyl‐functionalized polystyrene ( 3 ) was achieved by successive acid‐catalyzed hydrolysis and saponification reactions. The polymerization processes were monitored by gas chromatography analyses. The unimolecular‐functionalized initiator and functionalized polymers were characterized by thin layer chromatography, spectroscopy, size exclusion chromatography, and nonaqueous titration analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

12.
The effect of α‐cyclodextrin (α‐CD) on the crystallization behavior of poly(3‐hydroxybutyrate) (PHB) was investigated with polarized optical microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. We found that the addition of α‐CD can greatly accelerate the crystallization of PHB and that α‐CD has a potential not only to enhance the nucleation but also to accelerate the crystallization of PHB. Compared to a conventional nucleation agent, such as talc, α‐CD is a natural product and has many advantages because it is environmentally friendly and safe to humans. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3461–3469, 2004  相似文献   

13.
We describe the synthesis and characterization of a weakly cross‐linked poly(methacrylic acid‐co‐ethyl acrylate) alkali‐swellable emulsion (ASE), as well as an investigation of its influence on the rate of polymer diffusion in latex films. The films examined were formed from poly(vinyl acetate‐co‐butyl acrylate) latex particles containing a small amount of acrylic acid as a comonomer. Polymer diffusion rates were monitored by the energy transfer technique. We found that the presence of the ASE component, either in the acid form or fully neutralized by ammonia or sodium hydroxide, had very little effect on the polymer diffusion rate. However, in the presence of 2 wt % NH4‐ASE, there was a small but significant increase in the polymer diffusion rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5632–5642, 2005  相似文献   

14.
Fluorescence spectroscopy was used to study the kinetics of polymerization of acrylic adhesive formulations exposed to a 355‐nm pulsed emission from an Nd‐YAG laser. Nine fluorescent probes were used for monitoring the laser curing, showing different sensitivities. In general, the fluorescence intensity emission increased as crosslinking occurred. In addition, solvatochromic fluorescent probes showed a blueshift in their emission. A relative method was applied for the evaluation of the polymerization rates in three different acrylic systems. Special features of pulsed‐laser‐induced polymerization were treated in detail, such as the influence of the laser pulse frequency and the incident laser beam intensity. The polymerization rate slowed down as the pulse repetition rate decreased. An inhibition period due to oxygen quenching was observed, and it was highly dependent on the laser repetition rate and the nature of the photoinitiator. The effect of the laser beam intensity on the kinetics of such fast reactions was studied. In general, increasing the laser energy improved the rate of polymerization. The degree of cure improved as the polymerization rate increased as a result of faster crosslinking, rather than relaxation volume kinetics. Moreover, a saturation rate effect occurred that depended on the photoinitiator. The different behaviors of the two photoinitiators in the curing of the same acrylic formulation was explained on the basis of primary radical termination. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1227–1238, 2004  相似文献   

15.
A series of α‐alkylacrylates, including methyl ethacrylate (MEA), methyl α‐propylacrylate, methyl α‐isopropylacrylate (MiPA), methyl α‐butylacrylate (MnBA), and methyl α‐isobutylacrylate (MiBA), were successfully polymerized at 65 °C under high pressure (1–9 kbar). In contrast to results obtained at ambient pressure, all monomers yielded high molecular weight polymers (number‐average molecular weight = 4–18 × 104), except for MiPA (number‐average molecular weight = 8 × 103), probably because of the high steric hindrance of the isopropyl group. Polymerization kinetics under high pressure were obtained for MEA, MnBA, and MiBA. Overall activation volumes were estimated to be ?14.9, ?17.0, and ?11.6 mL mol?1 for MEA (3–7 kbar), MnBA (3–7 kbar), and MiBA (5–9 kbar), respectively. Extrapolation to ambient pressure provided rates of polymerization for these monomers unaffected by the ceiling temperature effect. These values were further used to quantitatively assess the steric influence exerted by the α‐substituent on the polymerizability of these sterically congested acrylates with Meyer's steric parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 836–843, 2002; DOI 10.1002/pola.10161  相似文献   

16.
In this research, thermoresponsive copolymer latex particles with an average diameter of about 200–500 nm were prepared via surfactant‐free emulsion polymerization. The thermoresponsive properties of these particles were designed by the addition of hydrophilic monomers [acrylic acid (AA) and sodium acrylate (SA)] to copolymerize with N‐isopropylacrylamide (NIPAAm). The effects of the comonomers and composition on the synthesis mechanism, kinetics, particle size, morphology, and thermoresponsive properties of the copolymer latex were also studied to determine the relationships between the synthesis conditions, the particle morphology, and the thermoresponsive properties. The results showed that the addition of hydrophilic AA or SA affected the mechanism and kinetics of polymerization. The lower critical solution temperature (LCST) of the latex copolymerized with AA rose to a higher temperature. However, because the strong hydrophilic and ionic properties of SA caused a core–shell structure, where NIPAAm was in the inner core and SA was in the outer shell, the LCST of the latex copolymerized with SA was still the same as that of pure poly(N‐isopropylacrylamide) latex. It was concluded that these submicrometer copolymer latex particles with different thermoresponsive properties could be applied in many fields. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 356–370, 2006  相似文献   

17.
Poly(ethylene glycol) (PEG) can form either the inclusion complex with α‐cyclodextrins (α‐CDs) through host–guest interactions or the interpolymer complex with poly(acrylic acid) (PAA) through hydrogen‐bonding interaction. Mixing α‐CD, PEG, and PAA ternary components in an aqueous solution, the competition between host–guest and hydrogen‐bonding interactions occurs. Increasing feed ratio of α‐CD:EG:AA from 0:1:1 to 0.2:1:1 (molar ratio), various interesting supramolecular polymer systems, such as hydrogen‐bonding complex, dynamic polyrotaxane, crystalline inclusion complex, and thermoresponsive hydrogel, are successively obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1114–1120, 2008  相似文献   

18.
The crystallization and morphology of poly(ethylene‐2,6‐naphthalene dicarboxylate) (PEN) containing, as nucleating agents, a sodium salt of a copolymer of ethylene and acrylic acid or a sodium salt of a copolymer of ethylene and methacrylic acid, were investigated with differential scanning calorimetry, polarized optical microscopy, and small‐angle light scattering. The nucleating agents accelerated the crystallization rate at high temperatures by decreasing the surface free energy barrier hindering nucleation. Meanwhile, the nucleating agents with flexible chains could also improve the mobility of the PEN chains and increase the crystallization rate at low temperatures. Hedrites were observed when PEN was crystallized at high temperatures, whereas crystallization at low temperatures led to the formation of spherulites. Similar but smaller morphologies were obtained in the presence of nucleating agents. With nucleating agents, the spherulites formed at low temperatures were less perfect, although the optical properties of the spherulites were not influenced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2387–2394, 2002  相似文献   

19.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号