首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

2.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

3.
A series of hydrogels from 2‐ethyl‐2‐oxazoline and three bis(2‐oxazoline) crosslinkers—1,4‐butylene‐2,2′‐bis(2‐oxazoline), 1,6‐hexamethylene‐2,2′‐bis(2‐oxazoline), and 1,8‐octamethylene‐2,2′‐bis(2‐oxazoline)—are prepared. The hydrogels differ by the length of aliphatic chain of crosslinker and by the percentage of crosslinker (2–10%). The influence of the type and the percentage of the crosslinker on swelling properties, mechanical properties, and state of water is studied. The equilibrium swelling degree in water ranges from 2 to 20. With a proper selection of the crosslinker, Young's modulus can be varied from 10 kPa to almost 100 kPa. To evaluate the potential for medical applications, the cytotoxicity of extracts and the contact toxicity toward murine fibroblasts are measured. The hydrogels with the crosslinker containing a shorter aliphatic exhibit low toxicity toward fibroblast cells. Moreover, the viability and the proliferation of pancreatic β‐cells incubated inside hydrogels for 12 days are analyzed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1548–1559  相似文献   

4.
Poly(D ,L ‐lactide) and poly(D ,L ‐lactide‐co‐glycolide) with various composition and with one methacrylate and one carboxylate end group were synthesized and grafted onto poly(vinyl alcohol) (PVA) via the carboxylate group. The graft copolymers were crosslinked via the methacrylate groups using a free radical initiator. The polymer networks were characterized by means of NMR and studied qualitatively by means of IR spectroscopy. The influence of the glycolide content in the polyester grafts and of the number of ester units in the grafts on thermal properties and swellability were studied as well. The high swellability in water is characteristic of all hydrogels. Differential scanning calorimetry (DSC) showed a single glass transition temperature that occurs in the range between 51 and 69 °C. Thermogravimetric analysis (TGA) of the networks showed the main loss in weight in the temperature range between 290 and 370 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4536–4544, 2007  相似文献   

5.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

6.
Homopoly(L ‐lactide) and homopoly(D,L ‐lactide) were almost inert for biodegradation with tricine buffer or normal enzymes such as bromelain, pronase, and cholesterol esterase but biodegradable with proteinase K. Significantly enhanced biodegradation was observed when an optically active (R)‐ or (S)‐3‐methyl‐4‐oxa‐6‐hexanolide (MOHEL) unit was introduced into poly(L ‐lactide) [poly(L ‐LA)] or poly(D,L ‐lactide) [poly(D,L ‐LA)] sequences. Poly[L ‐LA‐ran‐(R)‐MOHEL] in molar ratios of 86/14 to 43/57 showed good biodegradability that was independent of crystallinity. The biodegradation of polymers with proteinase K increased in the following order: poly[D,L ‐LA‐ran‐(R)‐MOHEL] > poly[L ‐LA‐ran‐(R)‐MOHEL] > poly[D,L ‐LA‐ran‐(S)‐MOHEL] > poly[L ‐LA‐ran‐(S)‐MOHEL] > poly(R)‐MOHEL > poly(D,L ‐LA). The number‐average molecular weight, molecular weight distribution, glass‐transition temperature, and melting temperature did not change before and after the biodegradation of poly[L ‐LA‐ran‐(R)‐MOHEL], indicating that the degradation occurred from the polymer surface. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1374–1381, 2001  相似文献   

7.
We describe the synthesis and characterization of the first water‐soluble and chiral poly(2,4‐disubstituted‐2‐oxazoline)s. While poly(2,4‐dimethyl‐2‐oxazoline)s are water soluble up to 100 °C, aqueous solutions of poly(2‐ethyl‐4‐methly‐2‐oxazoline) exhibit a lower critical solution temperature. This is discussed in context with its constitutional isomers poly(2‐oxazoline)s and poly(2‐oxazine)s. Circular dichroism spectroscopy revealed strong Cotton effects, which are also responsive to temperature in aqueous solution. It is therefore hypothesized that structures, comparable to polyproline helices, are formed in aqueous solution. In contrast to polyproline, poly(2,4‐disubstituted‐2‐oxazoline)s are highly water soluble and therefore represent very interesting pseudo‐polypeptides that may be useful to develop responsive biomimetic biomaterials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Polyelectrolyte complexes (PECs) have been prepared from well‐defined (quaternized) poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and high molecular weight poly(2‐acrylamido‐2‐methylpropane sodium sulfonate) (PAMPSNa) after a thorough study of their viscometric properties. The effect of pH and quaternization degree of PDMAEMA on PECs stoichiometry has been examined. PEC‐based materials have been characterized in terms of thermal stability, equilibrium swelling degree, and free/bound water composition. The stoichiometry and swellability of the physically crosslinked hydrogels obtained from fully quaternized PDMAEMA/PAMPSNa complexes do not depend on pH. In contrast, PECs made of non quaternized PDMAEMA and PAMPSNa are highly affected by pH, and could reversibly disintegrate at pH ≥ 9. Partially quaternized PDMAEMA/PAMPSNa PECs exhibit intermediate properties and form stable loose structures in the whole investigated pH range. Finally, stable dispersions of PECs nanoparticles have been successfully produced from dilute solutions of the complementary polyelectrolytes. The nanoparticle average diameter as determined by dynamic light scattering proved to depend on the molar fraction of DMAEMA‐based subunits and on the initial polyelectrolyte concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5468–5479, 2006  相似文献   

9.
Hyperbranched poly(2‐ethyl‐2‐oxazoline) was synthesized by a combination of cationic ring‐opening polymerization and the oxidation of thiol to disulfide groups. A three‐arm star poly(2‐ethyl‐2‐oxazoline) (PEtOx) was first synthesized using 1,3,5‐tris(bromomethyl) benzene as an initiator. The star PEtOx was end‐capped with potassium ethyl xanthate. Similarly, a linear PEtOx was synthesized and end‐capped with potassium ethyl xanthate using benzyl bromide as an initiator. Hyperbranched PEtOx was then obtained by in situ cleaving and subsequent oxidation of the star PEtOx and linear PEtOx mixture with n‐butylamine as both a cleaving agent and a base in tetrahydrofuran. The linear PEtOx was used to prevent the formation of gel. The hyperbranched PEtOx can be cleaved with dithiothreitol to trithiol and monothiol polymer. The hyperbranched PEtOx shows no remaining thiols using Ellman's assay. The resulting hyperbranched PEtOx was hydrolyzed to a novel hyperbranched polyethyleneimine with degradable disulfide linkages. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2030–2037  相似文献   

10.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

11.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

12.
Using an in situ‐generated calcium‐based initiating species derived from pentaerythritol, the bulk synthesis of well‐defined four‐arm star poly(L ‐lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7–3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L ‐lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L ‐lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudoliving polymerization was observed. As part of this study, in situ FT‐Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring‐opening polymerization of lactide. The advantages of using this technique rather than FTIR‐ATR and 1H NMR for monitoring L ‐lactide consumption during polymerization are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4736–4748, 2009  相似文献   

13.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

15.
Two enantiomeric amphiphilic graft copolymers consisting of water soluble poly(2‐hydroxyethyl methacrylate) (HEMA) and biodegradable oligo(L ‐lactide) (OLLA) or oligo(D ‐lactide) (ODLA) were synthesized by free radical copolymerization. HEMA‐OL(D)LA macromonomers were synthesized by ring opening polymerization of L ‐ or D ‐lactide. Both HEMA‐OLA macromonomers and graft copolymers were characterized by NMR spectroscopy and gel permeation chromatography. Graft copolymers and their stereocomplexes were analyzed by wide angle X‐ray diffraction and differential scanning calorimetry (DSC). Due to the formation of stereocomplex crosslinks between poly(HEMA) main chains, amphiphilic, biodegradable hydrogels prepared by blending of two enantiomeric poly(HEMA‐g‐OLLA) and poly(HEMA‐g‐ODLA) degraded more slowly in phosphate buffered saline than individual optically pure poly‐(HEMA‐g‐OL(D)LA).  相似文献   

16.
A novel class of biomimetic glycopolymer–polypeptide triblock copolymers [poly(L ‐glutamate)–poly(2‐acryloyloxyethyllactoside)–poly(L ‐glutamate)] was synthesized by the sequential atom transfer radical polymerization of a protected lactose‐based glycomonomer and the ring‐opening polymerization of β‐benzyl‐L ‐glutamate N‐carboxyanhydride. Gel permeation chromatography and nuclear magnetic resonance analyses demonstrated that triblock copolymers with defined architectures, controlled molecular weights, and low polydispersities were successfully obtained. Fourier transform infrared spectroscopy of the triblock copolymers revealed that the α‐helix/β‐sheet ratio increased with the poly(benzyl‐L ‐glutamate) block length. Furthermore, the water‐soluble triblock copolymers self‐assembled into lactose‐installed polymeric aggregates; this was investigated with the hydrophobic dye solubilization method and ultraviolet–visible analysis. Notably, this kind of aggregate may be useful as an artificial polyvalent ligand in the investigation of carbohydrate–protein recognition and for the design of site‐specific drug‐delivery systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5754–5765, 2004  相似文献   

17.
Thermoresponsive and pH‐responsive graft copolymers, poly(L ‐glutamate)‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) and poly(L ‐glutamic acid‐co‐(L ‐glutamate‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate))), were synthesized by ring‐opening polymerization (ROP) of N‐carboxyanhydride (NCA) monomers and subsequent atom transfer radical polymerization of 2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate. The thermoresponsiveness of graft copolymers could be tuned by the molecular weight of oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) (OMEO3MA), composition of poly(L ‐glutamic acid) (PLGA) backbone and pH of the aqueous solution. The α‐helical contents of graft copolymers could be influenced by OMEO3MA length and pH of the aqueous solution. In addition, the graft copolymers exhibited tunable self‐assembly behavior. The hydrodynamic radius (Rh) and critical micellization concentration values of micelles were relevant to the length of OMEO3MA and the composition of biodegradable PLGA backbone. The Rh could also be adjusted by the temperature and pH values. Lastly, in vitro methyl thiazolyl tetrazolium (MTT) assay revealed that the graft copolymers were biocompatible to HeLa cells. Therefore, with good biocompatibility, well‐defined secondary structure, and mono‐, dual‐responsiveness, these graft copolymers are promising stimuli‐responsive materials for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Starburst triblock copolymers consisting of 8‐arm poly(ethylene glycol) (8‐arm PEG) and biodegradable poly(L ‐lactide) (PLLA) or its enantiomer poly(D ‐lactide) (PDLA), 8‐arm PEG‐b‐PLLA‐b‐PEG ( Stri‐L ), and 8‐arm PEG‐b‐PDLA‐b‐PEG ( Stri‐D ) were synthesized. An aqueous solution of a 1:1 mixture ( Stri‐Mix ) of Stri‐L and Stri‐D assumed a sol state at room temperature, but instantaneously formed a physically crosslinked hydrogel in response to increasing temperature. The resulting hydrogel exhibited a high‐storage modulus (9.8 kPa) at 37 °C. Interestingly, once formed at the transition temperature, the hydrogel was stable even after cooling below the transition temperature. The hydrogel formation process was irreversible because of the formation of stable stereocomplexes. In aqueous solution, gradual hydrolytic erosion was observed because of degradation of the hydrogel. The combination of rapid temperature‐triggered irreversible hydrogel formation, high‐mechanical strength, and degradation behavior render this polymer mixture system suitable for use in injectable biomedical materials, for example, as a drug delivery system for bioactive reagents or a biodegradable scaffold for tissue engineering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6317–6332, 2008  相似文献   

19.
High molecular weight poly(L ‐lactide)s (PLLAs) and poly(D ‐lactide)s (PDLAs) were synthesized in toluene at 70 °C by ring‐opening polymerization of optically pure L ‐lactide and D ‐lactide, using tin(II) 2‐ethylhexanoate (SnOct2) and 2‐(2‐methoxyethoxy)ethanol as initiator and coinitiator, respectively. Under these conditions, polarimetry as well as 13C NMR spectroscopy indicated that the synthesized poly(lactide)s (PLAs) are more than 99% isotactic. The molecular weight was successfully controlled by adjusting the monomer‐to‐initiator molar ratio. Gel permeation chromatography and MALDI‐TOF mass spectrometry analyses showed that the polydispersity index of the PLAs is below 1.1. Moreover, MALDI‐TOF spectra showed two different chain distributions, one characterized by an even number of lactic acid repeat units and the other by an odd number of lactic acid repeat units. The second distribution, indicative of the presence of intermolecular transesterification reactions, appears at the very beginning of the polymerization and its intensity increases with the polymerization time. Finally, a reversible reaction kinetic model was used to determine the monomer equilibrium concentration ([M]eq = 1.4 ± 0.5%) and the propagation rate constant (kp = 14.4 ± 0.5 L mol?1 h?1) of the polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1944–1955, 2007  相似文献   

20.
Commercial poly(L ‐lactide) is typically heterogeneous in chain structure due to the existence of a small amount of D ‐lactyl units that are produced by the racemization reactions during the synthesis. In this article, the stereochemical heterogeneity of two commercial poly(L ‐lactide) was investigated with temperature rising elution fractionation (TREF) and successive self‐nucleation/annealing (SSA) thermal fractionation. For both samples, three fractions were collected and characterized with rotatory power analysis and DSC. The fractions show distinct optical purity and DSC results, which reflect the structure differences among them directly. After SSA treatment, the observation of multiple endotherms for each physically separated fraction confirms the fractionated sample contains a heterogeneous intermolecular and intramolecular distribution of defects. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号