首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The explicit implicit domain decomposition methods are noniterative types of methods for nonoverlapping domain decomposition but due to the use of the explicit step for the interface prediction, the methods suffer from inaccuracy of the usual explicit scheme. In this article a specific type of first‐ and second‐order splitting up method, of additive type, for the dependent variables is initially considered to solve the two‐ or three‐dimensional parabolic problem over nonoverlapping subdomains. We have also considered the parallel explicit splitting up algorithm to define (predict) the interface boundary conditions with respect to each spatial variable and for each nonoverlapping subdomains. The parallel second‐order splitting up algorithm is then considered to solve the subproblems defined over each subdomain; the correction step will then be considered for the predicted interface nodal points using the most recent solution values over the subdomains. Finally several model problems will be considered to test the efficiency of the presented algorithm. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
本文以二维波动方程为例 ,研究基于自然边界归化的一种区域分解算法 .首先将控制方程对时间进行离散化 ,得到关于时间步长离散化格式 ,对每一时间步长求解一椭圆型外问题 ;然后引入两条人工边界 ,提出了 Schwarz交替算法 ,给出了算法的收敛性 ,并对圆外区域研究了压缩因子  相似文献   

3.
We propose mixed and hybrid formulations for the three‐dimensional magnetostatic problem. Such formulations are obtained by coupling finite element method inside the magnetic materials with a boundary element method. We present a formulation where the magnetic field is the state variable and the boundary approach uses a scalar Dirichlet‐Neumann map to describe the exterior domain. Also, we propose a second formulation where the magnetic induction is the state variable and a vectorial Dirichlet‐Neumann map is used to describe the outer field. Numerical discretizations with “edge” and “face” elements are proposed, and for each discrete problem we study an “inf‐sup” condition. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 85–104, 2002  相似文献   

4.
R. Chapko 《PAMM》2002,1(1):424-425
We consider initial boundary value problems for the homogeneous differential equation of hyperbolic or parabolic type in the unbounded two‐ or three‐dimensional spatial domain with the homogeneous initial conditions and with Dirichlet or Neumann boundary condition. The numerical solution is realized in two steps. At first using the Laguerre transformation or Rothe's method with respect to the time variable the non‐stationary problem is reduced to the sequence of boundary value problems for the non‐homogeneous Helmholtz equation. Further we construct the special integral representation for solutions and obtain the sequence of boundary integral equations (without volume integrals). For the full‐discretization of integral equations we propose some projection methods.  相似文献   

5.
The article proposes a nonoverlapping domain decomposition method for variational inequalities derived from free boundary problems. The free boundary value problem is broken up into two problems on nonoverlapping regions. In one region the problem is treated as a partial differential equation, while in the second region that contains the free boundary part, a variational inequality is considered. By solving these two related problems successively, we have shown that the successive solutions converge to the solution of the original problem. Application to a free surface seepage problem is given. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

6.
This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a number of nonoverlapping subdomains. In each subdomain, a method based on a combination of HPM and integral equation formalism is implemented. The boundary condition at the right endpoint of each inner subdomain is established before deriving an iterative scheme for the components of the solution series. The accuracy and efficiency of the DDHPM are demonstrated by 4 examples (2 nonlinear and 2 linear). In comparison with the traditional HPM, the proposed domain decomposition HPM is highly accurate.  相似文献   

7.
In this article, we propose an iterative method based on the equation decomposition technique ( 1 ) for the numerical solution of a singular perturbation problem of fourth‐order elliptic equation. At each step of the given method, we only need to solve a boundary value problem of second‐order elliptic equation and a second‐order singular perturbation problem. We prove that our approximate solution converges to the exact solution when the domain is a disc. Our numerical examples show the efficiency and accuracy of our method. Our iterative method works very well for singular perturbation problems, that is, the case of 0 < ε ? 1, and the convergence rate is very fast. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
The free streamline problem investigated is that of fluid flow past a symmetric truncated concave‐shaped profile between walls. An open wake or cavity is formed behind the profile. Conformal mapping techniques are used to solve this problem. The problem formulated in the hodograph plane is decomposed into two nonoverlapping domains. Heterogeneous modeling is then used to describe the problems, i.e., a different governing differential equation in each domain. In one of these domains, a Baiocchi‐type transformation is used to obtain a fixed domain formulation for the part of the transformed problem containing an unknown boundary. In the other domain, the Baiocchi‐type transformation is extended across the boundary between the two domains, thus yielding a different problem formulation. This also assures that the dependent variables and their normal derivatives are continuous along this common boundary. The numerical solution scheme, a successive over‐relaxation approach, is applied over the whole problem domain with the use of a projection‐operation over only the fixed domain formulated part. Numerical results are obtained for the case of a truncated circular profile. These results are found to be in good agreement with another published result. The existence and uniqueness of the solution to the problem as a variational inequality is shown, and the convergence of the numerical solution using a domain decomposition method scheme is demonstrated by assuming some convergence property on the common interface of the two subdomains. © 2000 John Wiley & Sons, Inc. Numeer Methods Partial Differential Eq 16: 459–479, 2000  相似文献   

9.
In this paper, we consider the inverse problem of determining the heat source, which depends only on spatial variable in one‐dimensional heat equation in a bounded domain where data is given at some fixed time. A conditional stability result is given, and a quasi‐boundary value regularization method is also provided. For this regularization solution, the Hölder type stability estimate between the regularization solution and the exact solution is obtained. Numerical examples show that the regularization method is effective and stable. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Ch. Zhang  A. Savaidis 《PAMM》2002,1(1):205-206
Analysis of elastic wave propagation in anisotropic solids with cracks is of particular interest to quantitative non‐destructive testing and fracture mechanics. For this purpose, a novel time‐domain boundary integral equation method (BIEM) is presented in this paper. A finite crack in an unbounded elastic solid of general anisotropy subjected to transient elastic wave loading is considered. Two‐dimensional plane strain or plane stress condition is assumed. The initial‐boundary value problem is formulated as a set of hypersingular time‐domain traction boundary integral equations (BIEs) with the crack‐opening‐displacements (CODs) as unknown quantities. A time‐stepping scheme is developed for solving the hypersingular time‐domain BIEs. The scheme uses the convolution quadrature formula of Lubich [1] for temporal convolution and a Galerkin method for spatial discretization of the BIEs. An important feature of the present time‐domain BIEM is that it uses the Laplace‐domain instead of the more complicated time‐domain Green's functions. Fourier integral representations of Laplace‐domain Green's functions are applied. No special technique is needed in the present time‐domain BIEM for evaluating hypersingular integrals.  相似文献   

11.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

12.
This article is concerned with the use of integrated radial‐basis‐function networks (IRBFNs) and nonoverlapping domain decompositions (DDs) for numerically solving one‐ and two‐dimensional elliptic problems. A substructuring technique is adopted, where subproblems are discretized by means of one‐dimensional IRBFNs. A distinguishing feature of the present DD technique is that the continuity of the RBF solution across the interfaces is enforced with one order higher than with conventional DD techniques. Several test problems governed by second‐ and fourth‐order differential equations are considered to investigate the accuracy of the proposed technique. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

13.
This paper is devoted to the analysis of the N‐space dimensional heat equation, subject to Cauchy–Dirichlet boundary conditions. The problem is set in a symmetric conical type domain. More precisely, we look for sufficient conditions on the lateral boundary of the domain, as weak as possible in order to obtain the maximal regularity of the solution in an anisotropic Hilbertian Sobolev space. For this purpose, the domain decomposition method is employed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports a new Cartesian‐grid collocation method based on radial‐basis‐function networks (RBFNs) for numerically solving elliptic partial differential equations in irregular domains. The domain of interest is embedded in a Cartesian grid, and the governing equation is discretized by using a collocation approach. The new features here are (a) one‐dimensional integrated RBFNs are employed to represent the variable along each line of the grid, resulting in a significant improvement of computational efficiency, (b) the present method does not require complicated interpolation techniques for the treatment of Dirichlet boundary conditions in order to achieve a high level of accuracy, and (c) normal derivative boundary conditions are imposed by means of integration constants. The method is verified through the solution of second‐ and fourth‐order PDEs; accurate results and fast convergence rates are obtained. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
The first and second order of accuracy in time and second order of accuracy in the space variables difference schemes for the numerical solution of the initial‐boundary value problem for the multidimensional hyperbolic equation with dependent coefficients are considered. Stability estimates for the solution of these difference schemes and for the first and second order difference derivatives are obtained. Numerical methods are proposed for solving the one‐dimensional hyperbolic partial differential equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

16.
The paper deals with the three‐dimensional Dirichlet boundary value problem (BVP) for a second‐order strongly elliptic self‐adjoint system of partial differential equations in the divergence form with variable coefficients and develops the integral potential method based on a localized parametrix. Using Green's representation formula and properties of the localized layer and volume potentials, we reduce the Dirichlet BVP to a system of localized boundary‐domain integral equations. The equivalence between the Dirichlet BVP and the corresponding localized boundary‐domain integral equation system is studied. We establish that the obtained localized boundary‐domain integral operator belongs to the Boutet de Monvel algebra. With the help of the Wiener–Hopf factorization method, we investigate corresponding Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev (Bessel potential) spaces. Copyright © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons, Ltd.  相似文献   

17.
1.IntroductionDomaindecompositionasanewmethodofcomputationalmathematics,waJsdevel-opedsincethedevelopmentofparallelcomputersandmultiprocessorsupercomputers-Usingdomaindecompositionwecandecreasethescaleoftheproblemandimplementthesub-problemsonparallelcomputer.Fromatechnicalpointofviewmostofdo-maindecompositionmethodsconsideredsofarhavebeendealingwithfiniteelementmethods.In[1,2]ZhangandHuanghavegivenakindofnonoverlappingdomaindecompositionprocedurewithpiecewiselinearfiniteelementapproximation.…  相似文献   

18.
In this article, we primarily focuses to study the order‐reduction for the classical natural boundary element (NBE) method for the two‐dimensional (2D) hyperbolic equation in unbounded domain. To this end, we first build a semi‐discretized format about time for the hyperbolic equation and discuss the existence, stability, and convergence of the time semi‐discretized solutions. We then establish the classical fully discretized NBE format from the time semi‐discretized one and analyze the existence, stability, and convergence of the classical NBE solutions. Next, using proper orthogonal decomposition method, we build a reduced‐order extrapolated NBE (ROENBE) format containing very few unknowns but having adequately high accuracy, and we also discuss the existence, stability, and convergence of the ROENBE solutions. Finally, we use some numerical examples to show that the ROENBE method is far superior to the classical NBE one. It shows that the ROENBE method is reliable and effective for solving the 2D hyperbolic equation with the unbounded domain.  相似文献   

19.
A decomposition technique is presented for minimum-time trajectories which are characterized by intermediate constraints and discontinuities. The optimization of such multiple are trajectories is usually a formidable task. One optimization method, trajectory decomposition, breaks the original trajectory at points of discontinuity into separate arcs and then optimizes each are subject to prescribed boundary conditions. This constitutes a first level of control. Each first-level solution is evaluated by a second-level controller, which iteratively specifies new are boundary conditions in order to achieve an optimum solution. Unfortunately, this two-level method cannot be applied directly to minimum-time trajectories. The two-level trajectory decomposition method is extended here to a three-level technique for treating the minimum-time trajectory. The first level again optimizes each are for specified intervention parameters. The new second level, the time interface controller, exploits certain homogeneity properties to satisfy time transversality conditions at all boundaries and to couple the first-level solution arcs in time. The third level, the state interface controller, satisfies state transversality conditions at the arc junctions iteratively while driving the trajectory to its optimum. The new three-level procedure represents a feasible decomposition because each solution trajectory in the iterative sequence is physically realizable. The technique also offers a decentralization of control effort and reduction of initial-value sensitivities. An example problem is formulated.  相似文献   

20.
针对二阶椭圆型单障碍问题提出了一类基于非匹配网格的Lagrang ian乘子非重叠型区域分解方法.并在适当条件下给出了该方法的收敛性分析和收敛速度估计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号