首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chromium catalysts combined with phosphorous‐bridged bisphenoxy ligands were found to be highly active for ethylene polymerization. The most efficient catalyst precursor among them, generated by combining bis[3‐tert‐butyl‐5‐methyl‐2‐hydroxyphenyl](phenyl)phosphine hydrochloride ( 1a ) and CrCl3(THF)3, was characterized. X‐ray analysis of (3‐tert‐butyl‐5‐methyl‐2‐phenoxy)(3‐tert‐butyl‐5‐methyl‐ 2‐hydroxyphenyl)(phenyl)phosphine bis(tetrahydrofuran)chromium dichloride ( 6 ), obtained by the reaction of 1a and CrCl3(THF)3 in the presence of NaH, revealed a unique structure in which one phenol moiety of the bisphenol did not coordinate to the chromium center. Complex 6 showed higher activities than those observed in the in situ catalyst system. Polyethylene of various molecular weights was obtained with differing activators. The highest activity (113.5 kg mmol (cat)?1 h?1) was observed when TIBA/TB was used as a cocatalyst. A medium molecular weight polymer with narrow molecular weight distribution (Mw = 128,700, Mw/Mn = 1.8) was obtained using a 6 ‐TIBA/B(C6F5)3 system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3668–3676, 2007  相似文献   

2.
A series of sulfonated poly(phthalazinone ether phosphine oxide)s (sPPEPO) were prepared via aromatic nucleophilic substitution polycondensation of 4‐(4‐hydroxyphenyl) phthalazinone (HPPZ) with sulfonated bis(4‐fluorophenyl)phenyl phosphine oxide (sBFPPO) and bis(4‐fluorophenyl)phenyl phosphine oxide (BFPPO) at various ratios. The properties such as molecular weight, ion exchange capacity (IEC), swelling, thermal stability, proton conductivity, and morphology were investigated. sPPEPO with high IEC exhibited high proton conductivity while they still showed low swelling. Typically, sPPEPO with IEC of 1.54 and 1.69 meq/g exhibited high conductivity of 0.091 and 0.19 S/cm, and low swelling ratios of 14.3% and 19.5% at 80 °C, respectively. The low swelling was attributed to the strong intermolecular interaction including the electrostatic force and hydrogen bond. sPPEPO would be promising candidates used as polyelectrolyte membranes for fuel cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1758–1769, 2008  相似文献   

3.
We reveal a route for the preparation of phosphinated bisphenol, 1,1‐bis(4‐hydroxyphenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (2) , via a one‐pot reaction of 1,1,1‐tris(4‐hydroxyphenyl)ethane and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) in the catalysis of p‐toluenesulfonic acid. A two‐step reaction mechanism, acid‐fragmentation of 1,1,1‐tris(4‐hydroxyphenyl)ethane followed by nucleophilic addition of DOPO, is proposed for the synthesis. Based on (2) , a dicyanate ester derivative, 1,1‐bis(4‐cyanatophenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (3) was prepared and co‐cured with a commercially available dicyanate ester, the dicyanate ester of bisphenol A (BACY). Experimental data show that incorporating (3) into BACY enhances the flame retardancy and dielectric properties with little penalty to the thermal properties. A thermoset with Tg 274 °C, coefficient of thermal expansion (CTE) 49 ppm/°C, Dk 3.04 (1 GHz), Td (5%,) N2: 435 °C, air: 424 °C, and UL‐94 V‐0 rating can be achieved via this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
The palladium(0)‐catalyzed polyaddition of bifunctional vinyloxiranes [1,4‐bis(2‐vinylepoxyethyl)benzene ( 1a ) and 1,4‐bis(1‐methyl‐2‐vinylepoxyethyl)benzene ( 1b )] with 1,3‐dicarbonyl compounds [methyl acetoacetate ( 4 ), dimethyl malonate ( 6 ), and Meldrum's acid ( 8 )] was investigated under various conditions. The polyaddition of 1 with 4 was carried out in tetrahydrofuran with phosphine ligands such as PPh3 and 1,2‐bis(diphenylphosphino)ethane (dppe). Polymers having hydroxy, ketone, and ester groups in the side groups ( 5 ) were obtained in good yields despite the kinds of ligands employed. The number‐average molecular weight value of 5b was higher than that of 5a . The polyaddition of 1b and 6 was affected by the kinds of ligands employed. The corresponding polymer 7b was not obtained when PPh3 and 1,2‐bis(diphenylphosphino)ferrocene were used. The polyaddition was carried out with dppe as the ligand and gave polymer 7b in a good yield. The molecular weight of the polymer obtained from 1b and 8 was much higher than those of polymers 5b and 7b . The polyaddition with Pd2(dba)3 · CHCl3/dppe as a catalyst (where dba is dibenzylideneacetone) produced polymer 9b in a 92% yield (number‐average molecular weight = 45,600). The stereochemistries of all the obtained polymers were confirmed as an E configuration by the coupling constant of the vinyl proton. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2487–2494, 2002  相似文献   

5.
A novel diamine, bis(3‐aminophenyl)‐4‐(1‐adamantyl)phenoxyphenyl phosphine oxide (mDAATPPO), was synthesized via the Williamson ether reaction of 4‐(1‐adamantyl)phenol and bis(3‐nitrophenyl)‐4‐fluorophenyl phosphine oxide, followed by reduction. The phenol group was prepared by the Friedel–Crafts reaction of 1‐bromoadamantane and phenol, whereas the phosphine oxide group was synthesized by the Grignard reaction of 1‐bromo‐4‐fluorobezene and diphenyl phosphinic chloride, followed by nitration. The monomer and its intermediate compounds were characterized with Fourier transform infrared, NMR, and melting‐point apparatus. The monomer was then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic dianhydride, and pyromellitic dianhydride by the conventional two‐step synthesis: the preparation of poly(amic acid) followed by solution imidization. The molecular weights of the polyimides were controlled to 20,000 g/mol by off‐stoichiometry, and the synthesized polyimides were characterized with Fourier transform infrared, NMR, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. In addition, the solubility, intrinsic viscosity, dielectric constant, and birefringence of the polyimides were evaluated. Novel polyimides with mDAATPPO exhibited good solubility, high glass‐transition temperatures (290–330 °C), excellent thermal stability (>500 °C), low dielectric constants (2.77–3.01), low refractive indices, and low birefringence values (0.0019–0.0030). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2567–2578, 2006  相似文献   

6.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

7.
Fluorinated arylene vinylene ether (FAVE) polymers were prepared from the base‐promoted addition of commercial 2,2‐bis(4‐hydroxyphenyl)hexafluoropropane (6F bisphenol A) to aryl trifluorovinyl ether (TFVE), 2,2′‐bis(4‐trifluorovinyloxybiphenyl)‐1,1,1,3,3,3‐hexafluoropropane. The step‐growth polymerization kinetics by using stoichiometric NaH and catalytic Cs2CO3 were investigated by monitoring the 19F NMR signals of the aryl TFVEs. The nth order kinetic model was used to determine rate constants over a series of programmed temperatures. Polymerization using stoichiometric NaH resulted in second‐order kinetics with an activation energy of 59 kJ/mol. This model kinetic study provided insight into the mechanistic pathways of the FAVE polymer system that has recently shown a lot of interest in many areas of materials science. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

9.
Two types of arylidene compounds were synthesized by reacting p‐hydroxybenzaldehyde with acetone [1,5‐bis(4‐hydroxyphenyl)penta‐1,4‐dien‐3‐one] (PBHP) and cyclohexanone [2,6‐bis(4‐hydroxybenzylidene)cyclohexanone] (HBC). 1,4‐Pentadien‐3‐one‐1‐p‐hydroxyphenyl‐5‐p‐phenyl methacrylate (PHPPMA) and 4‐{[‐3‐(4‐hydroxybenzylidene)‐2‐oxocyclohexylidene]methyl}phenyl acrylate (HBA) were prepared by reacting PBHP and HBC with methacryloyl chloride and acryloyl chloride in the presence of triethylamine, respectively. Copolymerization of different feed compositions of PHPPMA and HBA with 2‐hydroxyethyl acrylate (HEA) was carried out using a free‐radical solution polymerization technique in ethyl methyl ketone (MEK) using benzoyl peroxide (BPO). All the monomer and polymers were characterized by IR and NMR (1H/13C) spectroscopic techniques. The reactivity ratio of the monomers were obtained using Fineman–Ross (FR), Kelen–Tudos (KT), and extended Kelen–Tudos (exKT) methods. The photocrosslinking properties of the polymers were done using a UV absorption spectroscopy technique. Homopolymers of both the arylidene polymers shows similar trend towards the rate of photocrosslinking. The rate of photocrosslinking was enhanced when the cyclohexanone based arylidene monomer was copolymerized with HEA. Thermal stability and molecular weights (Mw and Mn) of the polymers were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3433–3444, 2004  相似文献   

10.
Hyperbranched polyaspartimides were successfully prepared from bismaleimides (A2) and triamines (B3) through the Michael addition reaction. Two bismaleimides of 4,4′‐bismaleimidodiphenylmethane (BMDM) and bis(3‐ethyl‐5‐methyl‐4‐ maleimidophenyl)methane (BEMM) and two triamines of tris(3‐aminophenyl)phosphine oxide (TAPPO) and tris(4‐aminophenyl)amine (TAPA) were employed in the preparation of these hyperbranched polyaspartimides. The chemical structures of the polymers were characterized with Fourier transform infrared (FTIR), 1H and 31P NMR, and elemental analysis. Degrees of branching ranging from 0.51 to 0.69 were found with the polyaspartimides, ensuring their hyperbranched structure. The polymers also showed good solubility in common solvents, high glass‐transition temperatures of 256 °C, and excellent thermal stability above 370 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5921–5928, 2004  相似文献   

11.
Two flame‐retardant epoxy curing agents, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐tris(4‐hydroxyphenyl)methane (1) and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐ (4‐aminophenyl)‐bis(4‐hydroxyphenyl)methane (2), were prepared by a facile, economic, one‐pot procedure. The structures of the curing agents were confirmed by IR, high‐resolution mass, 1‐D, and 2‐D NMR spectra. A reaction mechanism was proposed for the preparation, and the effect of electron withdrawing/donating effects on the stabilization of the carbocation was discussed. (1‐2) served as curing agents for diglycidyl ether of bisphenol A (DGEBA), dicyclopentadiene epoxy (HP‐7200), and cresol novolac epoxy (CNE). Properties such as glass transition temperature, coefficient of thermal expansion, thermal decomposition temperature, and flame retardancy of the resulting epoxy thermosets were evaluated. The resulting epoxy thermosets show high Tg, low thermal expansion, moderate thermostability, and excellent flame retardancy. The bulky biphenylene phosphinate pendant makes polymer chains difficult to rotate, explaining the high Tg and low thermal expansion characteristic. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7898–7912, 2008  相似文献   

12.
When the bulk oligomerization of 1,3‐dioxolan‐2‐one (ethylene carbonate, EC) and 4‐methyl‐1,3‐dioxolan‐2‐one (propylene carbonate, PC) with the 2,2‐bis(4‐hydroxyphenyl)propane (bisphenol‐A, BPA)/base system (bases such as KHCO3, K2CO3, KOH, Li2CO3, and t‐BuOK) was investigated at elevated temperature, significant differences were observed. Oligomerization of EC initiated by BPA/base readily takes place, but the oligomerization of PC is inhibited. The very first propylene carbonate/propylene oxide unit readily forms a phenolic ether bond with the functional groups of BPA phenolate, but the addition of the second monomer unit is rather slow. The oligomerization of EC yields symmetrical oligo(ethylene oxide) side chains. According to IR studies the oligomeric chains formed from PC with BPA contain not only ether but also carbonate bonds. The in situ step oligomerization of the BPA dipropoxylate was also identified by SEC, and a possible reaction mechanism is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 545–550, 1999  相似文献   

13.
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001  相似文献   

14.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

15.
The synthesis and characterization of the fluoropolymers poly 1a – 1d and poly 2a – 2d with pendant hydroxyl groups were examined. The polyaddition of bis(epoxide)s [2,2′‐bis(4‐glycidyletherphenyl)hexafluoropropane and bisphenol A diglycidyl ether] with dicarboxylic acids (tetrafluoroterephthalic acid and terephthalic acid) and diols [2,2′‐bis(4‐hydroxyphenyl)hexafluoropropane, 2,2′,3,3′,5,5′,6,6′‐octafluoro‐4,4′‐biphenol, 1,4‐bis(hexafluorohydroxyisopropyl)benzene, and 1,3‐bis(hexafluorohydroxyisopropyl)benzene] was carried out at 50–100 °C for 6–48 h in the presence of quaternary onium salts (tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylphosphonium bromide, and tetrabutylphosphonium chloride; 2.5 mol %) as catalysts in dimethyl sulfoxide, N‐methylpyrrolidone, dimethylformamide, dimethylacetamide, dioxane, diglyme, o‐dichlorobenzene, chlorobenzene, and toluene to afford the corresponding polymers, poly 1a – 1d and poly 2a – 2d , with number‐average molecular weights of 11,000–59,400 in 45–97% yields. The solubility of the obtained polymers was good, and their thermal stability might be assumed from their structures. A linear relationship was observed between the contents of the fluorine atoms and the refractive indices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1395–1404, 2002  相似文献   

16.
A novel bis(ether anhydride) monomer, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride (4), was synthesized from the nitrodisplacement of 4‐nitrophthalonitrile by the bisphenoxide ion of 9,9‐bis(4‐hydroxyphenyl)fluorene (1), followed by alkaline hydrolysis of the intermediate tetranitrile and dehydration of the resulting tetracarboxylic acid. A series of poly(ether imide)s bearing the fluorenylidene group were prepared from the bis(ether anhydride) 4 with various aromatic diamines 5a–i via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s 6a–i followed by thermal cyclodehydration to the polyimides 7a–i. The intermediate poly(amic acid)s had inherent viscosities in the range of 0.39–1.57 dL/g and afforded flexible and tough films by solution‐casting. Except for those derived from p‐phenylenediamine, m‐phenylenediamine, and benzidine, all other poly(amic acid) films could be thermally transformed into flexible and tough polyimide films. The glass transition temperatures (Tg) of these poly(ether imide)s were recorded between 238–306°C with the help of differential scanning calorimetry (DSC), and the softening temperatures (Ts) determined by thermomechanical analysis (TMA) stayed in the range of 231–301°C. Decomposition temperatures for 10% weight loss all occurred above 540°C in an air or a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1403–1412, 1999  相似文献   

17.
A new positive working photosensitive poly(benzoxazole) (PBO) precursor based on poly(o‐hydroxyazomethine) ( 3 ) and 1‐{1,1‐bis[4‐(2‐diazo‐1‐(2H)naphthalenone‐5‐sulfonyloxy)phenyl]ethyl}‐4‐{1‐[4‐(2‐diazo‐1(2H)naphthalenone‐5‐sulfonyloxy)phenyl]methylethyl}benzene (S‐DNQ) as a photosensitive compound was developed. 3 was prepared by the condensation of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane with isophthalaldehyde in 1‐methyl‐2‐pyrrolidinone/toluene under azeotropic conditions. The photosensitive PBO precursor containing 30 wt % S‐DNQ showed a sensitivity of 120 mJ cm?2 and a contrast of 2.2 when it was exposed to 436‐nm light and developed with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 10‐μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm?2 ultraviolet light at 436 nm by the contact mode. The positive image was successfully converted into the PBO pattern by a thermal treatment. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3399–3405, 2002  相似文献   

18.
A diallyl‐containing bisphenol, 1,1‐bis(3‐allyl‐4‐hydroxyphenyl)‐1‐(6‐oxido‐6H ‐dibenzo [c,e][1,2] oxaphosphorin‐6‐yl) ethane ( 1 ), was prepared by a two‐step procedure. Then, a diallyl‐containing diamine, 1,1‐bis(3‐allyl‐4‐(4‐aminophenoxy)‐phenyl)‐1‐(6‐oxido‐6H‐dibenzo [c,e][1,2] oxaphosphorin‐6‐yl)ethane ( 3 ), was prepared from the nucleophilic substitution of ( 1 ) with 4‐fluoronitrobenzene, followed by the reduction by Fe/HCl. A flexible polyimide ( 4 ) with curable diallyl linkages was prepared from the condensation of ( 3 ) and 4,4′‐oxydiphthalic anhydride in m‐cresol in the presence of isoquinoline. Curing polyimide ( 4 ) at 300 °C leads to thermosetting polyimide ( 5 ). We discussed the amounts of allyl group on Tg, coefficient of thermal expansion, and thermal stability of thermosetting polyimides, and found that thermal properties and dimensional stability of thermosetting polyimides increase with the amounts of cured allyl moieties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 513–520  相似文献   

19.
A thorough study of the polymerization behavior of 4‐fluoro‐4′‐hydroxytriphenyl‐phosphine oxide, 2 , under nucleophilic aromatic substitution reactions has been carried out. The synthesis of 2 was achieved in excellent yields by the reaction of bis(4‐fluorophenyl)phenylphosphine oxide, 1 , with one equivalent of potassium hydroxide in DMSO/water. The structure and purity of 2 were confirmed via 1H, 13C, and 31P NMR spectroscopy along with elemental analysis. Polymerization reactions of 2 in NMP or DMSO at 180 °C provided the corresponding linear poly(arylene ether phosphine oxide)s, PAEPOs, with number average molecular weights, Mn, ranging from 11,700 to 36,500 Da. All of the polymer samples were completely soluble in chloroform, tetrahydrofuran, DMSO, NMP, and DMAc. The polymerization reactions were accompanied by a competing intramolecular process that resulted in the formation of cyclic oligomeric species that were removed via a final precipitation from methanol. Analysis using 31P NMR spectroscopy and size exclusion chromatography (SEC) confirmed that the majority of the lower molecular weight cyclic species were removed via this process. The polymer samples formed tough films when chloroform solutions were slowly evaporated on a glass slide. The PAEPO samples prepared in this study exhibited excellent thermal stability with Td (5%) values between 503 and 542 in air while the glass transition temperatures ranged from 223 to 237 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2099–2106, 2006  相似文献   

20.
Four novel diamines (9–12) were prepared by a two‐step procedure from phosphinated phenols (1–4) that were prepared from acid‐fragmentation of four bisphenols, including bisphenol A, 4,4′‐isopropylidenebis(2,6‐dimethylphenol), cis(4‐hydroxyphenyl)cyclohexane, and 9,9′‐bis(4‐hydroxyphenyl)fluorene, followed by nucleophilic addition of 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO). Copolyimides based on (9–12) /4,4′‐diaminodiphenyl ether (ODA)/dianhydride were prepared. The structure‐property relationship on the copolyimides was discussed. Due to the structural similarity, (9) /ODA‐based copolyimides were compared with (10) /ODA‐based copolyimides, while (11) /ODA‐based copolyimides were compared with (12) /ODA‐based copolyimides. The dimethyl substitutents cause (10) /ODA‐based copolyimides to display higher Tg, modulus, dimensional stability, contact angle, and better solubility than (9) /ODA‐based copolyimides. (12) /ODA‐based copolyimides that exhibit fluorene moieties display higher Tg and thermal stability, but a lower contact angle and poorer solubility than (11) /ODA‐based copolyimides that exhibit cyclohexane moieties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 390–400  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号