首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

2.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

3.
The copolymer of polystyrene‐block‐poly(ethylene oxide)‐block‐poly (tert‐butyl acrylate) (PS‐b‐PEO‐b‐PtBA) was prepared, the synthesis process involved ring‐opening polymerization (ROP), nitroxide‐mediated polymerization (NMP), and atom transfer radical polymerization (ATRP), and 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) was used as parent compound. The PEO precursors with α‐hydroxyl‐ω‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end groups(TEMPO‐PEO‐OH) were first obtained by ROP of EO using HTEMPO and diphenylmethylpotassium (DPMK) as the coinitiator. The TEMPO at one end of PEO chain mediated the polymerization of St using benzoyl peroxide as initiator. The resultant PS‐b‐PEO‐OH reacted further with 2‐bromoisobutyryl bromide and then initiated the polymerization of tBA in the presence of CuBr and PMDETA by ATRP. The ternary block copolymers PS‐b‐PEO‐b‐PtBA and intermediates were characterized by gel permeation chromatography, Fourier transform infrared, and nuclear magnetic resonance spectroscopy in detail. Differential scanning calorimetry measurements confirmed that the PS‐b‐PEO‐b‐PtBA with PEO as middle block can weaken the interaction between PS and PtBA blocks, the glass transition temperature (Tg) for two blocks were approximate to their corresponding homopolymers comparing with the PEO‐b‐PS‐b‐PtBA with PEO as the first block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2624–2631, 2008  相似文献   

4.
Well‐defined linear α‐anthracene‐ω‐maleimide functionalized polystyrene (l‐Anth‐PS‐MI) and linear α‐alkyne‐ω‐maleimide functionalized poly(tert‐butyl acrylate) (l‐alkyne‐PtBA‐MI) homopolymers, and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐PtBA (l‐Anth‐PS‐b‐PtBA‐MI) and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐poly(ε‐caprolactone) (PCL) (l‐Anth‐PS‐b‐PCL‐MI) block copolymers were obtained via combination of atom transfer radical polymerization (ATRP)/ring opening polymerization (ROP) and azide‐alkyne click reaction strategy. Subsequently, these linear homo and block copolymers were efficiently clicked via Diels‐Alder reaction to give their corresponding cyclic homo and block copolymers at reflux temperature of toluene for 48 h under 7–4 × 10?5 M conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Peptide–polymer conjugates are versatile class of biomaterials composed of a peptide block covalently linked with a synthetic polymer block. This report demonstrates the synthesis of peptide‐poly(tert‐butyl methacrylate) (Peptide‐PtBMA) conjugates of varying molecular weights via a “grafting from” atom transfer radical polymerization (ATRP) technique using as‐synthesized peptide‐based initiator in toluene. Peptide‐PtBMA conjugate is soluble in many organic solvents and undergoes self‐assembly into micro/nanospheres in DMF/THF as observed from both FESEM and DLS results. The conjugate micro/nanospheres are nothing but the composite micelles formed by the secondary aggregation of primary micelles generated initially in these organic solvents. The hydrolysis of tert‐butyl groups of Peptide‐PtBMA conjugate leads to the formation of peptide‐poly(methacrylic acid) (Peptide‐PMA) conjugate. The circular dichroism (CD) analysis exhibits the presence of β‐sheet conformation of peptide moiety in synthesized conjugates. The formed Peptide‐PMA conjugate is soluble in water and owing to its amphiphilic character, the conjugate molecules self‐assemble into spherical micelles as well as worm‐like micelles upon increasing the concentration of conjugate in water. However, the sodium salt of Peptide‐PMA conjugates (Peptide‐PMAS) self‐assembles into only spherical swollen micelles in water at higher (pH ~10). The critical aggregation concentrations (CACs) of both Peptide‐PMA and Peptide‐PMAS micelles are measured by fluorescence spectroscopy. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3019–3031  相似文献   

7.
A five‐arm star‐shaped poly(ethylene oxide) (PEO) with terminal bromide groups was used as a macroinitiator for the atom transfer radical polymerization of tert‐butyl acrylate (tBA), resulting in five‐arm star‐shaped poly(ethylene oxide)‐block‐poly(tert‐butyl acrylate) block copolymers. The polymerization proceeded in a controlled way using a copper(I)bromide/pentamethyl diethylenetriamine catalytic system in acetonitrile as solvent. The hydrolysis of the tBA blocks of the amphiphilic star‐shaped PEO‐b‐PtBA block copolymer resulted in dihydrophilic star structures. The encapsulation of the star‐block copolymers and their release properties in acid environment have been followed by UV‐spectroscopy and color changes, using the dye methyl orange as a hydrophilic guest molecule. Characterization of the structures has been done by 1H NMR, size exclusion chromatography, MALDI‐TOF, and differential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 650–660, 2008  相似文献   

8.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

10.
Atom transfer radical polymerization conditions with copper(I) bromide/pentamethyldiethylenetriamine (CuBr/PMDETA) as the catalyst system were employed for the polymerization of tert‐butyl acrylate, methyl acrylate, and styrene to generate well‐defined homopolymers, diblock copolymers, and triblock copolymers. Temperature studies indicated that the polymerizations occurred smoothly in bulk at 50 °C. The kinetics of tert‐butyl acrylate polymerization under these conditions are reported. Well‐defined poly(tert‐butyl acrylate) (PtBA; polydispersity index = 1.14) and poly(methyl acrylate) (PMA; polydispersity index = 1.03) homopolymers were synthesized and then used as macroinitiators for the preparation of PtBA‐b‐PMA and PMA‐b‐PtBA diblock copolymers in bulk at 50 °C or in toluene at 60 or 90 °C. In toluene, the amount of CuBr/PMDETA relative to the macroinitiator was important; at least 1 equiv of CuBr/PMDETA was required for complete initiation. Typical block lengths were composed of 100–150 repeat units per segment. A triblock copolymer, composed of PtBA‐b‐PMA‐b‐PS (PS = polystyrene), was also synthesized with a well‐defined composition and a narrow molecular weight dispersity. The tert‐butyl esters of PtBA‐b‐PMA and PtBA‐b‐PMA‐b‐PS were selectively cleaved to form the amphiphilic block copolymers PAA‐b‐PMA [PAA = poly(acrylic acid)] and PAA‐b‐PMA‐b‐PS, respectively, via reaction with anhydrous trifluoroacetic acid in dichloromethane at room temperature for 3 h. Characterization data are reported from analyses by gel permeation chromatography; infrared, 1H NMR, and 13C NMR spectroscopies; differential scanning calorimetry; and matrix‐assisted, laser desorption/ionization time‐of‐flight mass spectrometry. The assembly of the amphiphilic triblock copolymer PAA90b‐PMA80b‐PS98 within an aqueous solution, followed by conversion into stable complex nanostructures via crosslinking reactions between the hydrophilic PAA chains comprising the peripheral layers, produced mixtures of spherical and cylindrical topologies. The visualization and size determination of the resulting nanostructures were performed by atomic force microscopy, which revealed very interesting segregation phenomena. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4805–4820, 2000  相似文献   

11.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

12.
The synthesis together with mechanical property and rheological characterization of novel star–block copolymers comprising multiple polystyrene (PSt)-b-polyisobutylene (PIB) arms emanating from polydivinylbenzene (PDVB) cores are described. The synthesis strategy involved the preparation of PSt-b-PIB-Clt (i.e., diblocks fitted with a tert-chlorine terminus at the PIB end) by sequential living block polymerization of St and IB, ionizing the -Clt terminus by TiCl4 at room temperature, and linking the PSt-b-PIB prearms by DVB. Molecular characterization was effected mainly by triple detector GPC including refractive index (RI)-, UV-, and laser light scattering (LLS)-GPC traces. Evidence for intra- and intermolecular reactions between individual star–blocks is presented and a comprehensive mechanism to the final product is proposed. The stress–strain behavior of star–blocks has been studied and is compared with those of linear triblocks (i.e., two-arm stars) of similar arm molecular weights and composition in the 25–70°C range. The mechanical properties of star–blocks are invariably superior to those of the triblocks over the entire temperature range. The rheological behavior of star–blocks and linear triblocks has been compared in terms of dynamic viscosity at various frequencies. Star–blocks exhibit significantly lower melt viscosities than their linear counterparts, which signals improved processing behavior. We have also compared select rheological properties of the commercially available PSt-b-(hydrogenated-1,4-polybutadiene)-b-PSt thermoplastic elastomer (Kraton G 1650) with those of PIB-based linear triblocks and multiarm star–blocks of similar glassy/rubbery compositions. The melt viscosities of PIB-based triblocks and star–blocks were significantly lower than that of Kraton G over the entire frequency range investigated. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2235–2243, 1999  相似文献   

13.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

14.
Monoamino‐terminated and monocarboxylic acid‐terminated polystyrenes containing active halogenated end groups were prepared by atom transfer radical polymerization (ATRP) using the so‐called initiator method and protective group chemistry. α‐Chloropropionates were synthesized and utilized as initiators containing the tert‐butoxycarbonyl (t‐BOC)‐protected amino and the tert‐butyl (t‐Bu)‐protected carboxylic acid function, respectively. Optimum polymerization conditions were attained using CuCl/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) as catalyst and 10 vol % n‐butanol as homogenizing agent at 110 °C. However, targeting larger quantities an alternative route was established employing 50 vol % N,N‐dimethylformamide (DMF). Subsequent hydrolysis of the ω‐tert‐butoxycarbonyl polystyrenes afforded well‐defined polymers with quantitative deprotection of the functional groups. Comparatively, thermolytic cleavage of the protective sites was studied. 1H NMR verified the quantitative removal of the t‐BOC‐protecting groups. Furthermore, the resulting α‐amino‐ω‐chloro polystyrenes were reacted with Sanger reagent to confirm the existence of the thereby converted primary amino groups. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3845–3859, 2009  相似文献   

15.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

16.
Poly(oxyethylene)s terminated at both ends with 2‐bromopropionate end‐groups were prepared and characterized by means of MALDI TOF mass spectrometry. It was shown, that atom transfer radical polymerization (ATRP) of methyl methacrylate with a poly(oxyethylene) macroinitiator in bulk proceeds with low initiation efficiency while polymerization of tert‐butyl acrylate proceeds with practically quantitative initiation, leading to ABA block copolymers. Originally formed tert‐butyl acrylate blocks contain terminal bromine, as expected for the ATRP mechanism. MALDI TOF analysis indicates, however, that in the later stages of polymerization side reactions lead to elimination of terminal bromine.  相似文献   

17.

The living polymerization of p‐tert‐butoxystyrene (tBuOS) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) 60/40 v/v solvent mixture at –80°C. The model initiator 1,1,‐ditolylethylene (DTE) capped 2‐chloro‐2,4,4‐trimethylpentane (TMPCl) was formed in situ in conjunction with TiCl4. Lowering the Lewis acidity by the addition of Ti(OIp)4 was necessary to induce a rapid and controlled polymerization of tBuOS. Well‐defined polymers with controlled molecular weights, however, were only obtained at a narrow [Ti(OIp)4]/[TiCl4]=0.83–0.86 ratio. Above this ratio, the polymerization of tBuOS was slow and became absent at [Ti(OIp)4]/[TiCl4]≥1.18. At ratios lower than 0.83, the polymerization was too rapid and the initiator efficiency was lower than 100%. The living polymerization of tBuOS was also studied with SnBr4 as Lewis acid. After capping TMPCl with DTE, Ti(OIp)4 was added to reach [Ti(OIp)4]/[TiCl4]=1.2, followed by the addition of tBuOS and SnBr4. SnBr4 induced a well‐controlled living polymerization approximately first order in [SnBr4], and the polymers exhibited close to theoretical M ns and low polydispersity indices (PDI<1.2). The success of the method was also demonstrated by the clean synthesis of poly(isobutylene‐b‐p‐tert‐butoxystyrene) PIB‐b‐PtBuOS diblock copolymers. PtBuOS‐b‐PIB‐b‐PtBuOS triblock copolymer thermoplastic elastomers were prepared by employing 5‐tert‐butyl‐1,3‐bis(1‐methoxy‐1‐methylethyl)benzene (DCE) as a difunctional initiator for the living polymerization of IB followed by capping with DTE and substitution of TiCl4 with SnBr4 for the polymerization of tBuOS. Deprotection of the triblock copolymer in the presence of catalytic amount of HCl yielded poly(p‐hydroxystyrene‐b‐isobutylene‐b‐p‐hydroxystyrene) (PHOS‐b‐PIB‐b‐PHOS). PHOS‐b‐PIB‐b‐PHOS with 39.3 wt% p‐hydroxystyrene content exhibited typical characteristic of a thermoplastic elastomers (TPEs) with tensile strength of 18 MPa and ultimate elongation of 300%.  相似文献   

18.
In this article, we demonstrate the Passerini three‐component reaction as a simple, effective method for the synthesis of polymers with double functional end groups, which are key precursors for the preparation of ABC miktoarm terpolymers. Thus, via the one‐step Passerini reaction of monomethoxy poly(ethylene glycol)–propionaldehyde (PEG‐CHO) with 2‐bromo‐2‐methylpropionic acid and propargyl isocyanoacetamide, the PEG chain end was simultaneously functionalized with one atom transfer radical polymerization (ATRP) initiating site and one alkynyl group. The resulting PEG(‐alkynyl)‐Br was then used for the synthesis of three types of miktoarm ABC terpolymers via two approaches. First, we conducted ATRP of N‐isopropylacrylamide (NIPAM), then click reaction with azido‐terminated polystyrene (PS‐N3) or poly(tert‐butyl acrylate) (PtBA‐N3) and obtained two ABC miktoarm terpolymers PEG(‐b‐PNIPAM)‐b‐PS and PEG(‐b‐PNIPAM)‐b‐PtBA. Alternatively, we conducted single electron transfer living radical polymerization of tBA and click reaction with PS‐N3 simultaneously to give PEG(‐b‐PtBA)‐b‐PS. All the polymer precursors and miktoarm terpolymers have been characterized by 1H NMR, Fourier transform infrared, gel permeation chromatography, demonstrating that both approaches provided well‐defined ABC miktoarm terpolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Photoinduced atom transfer radical polymerizations (ATRP) of t‐butyl methacrylate (BMA) were carried out, initiated by model initiator benzyl N,N‐diethyldithiocarbamate (BDC) in the presence of CuCl/bipyridine (bpy) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated a first‐order in the monomer. The molecular weight of poly(t‐butyl methacrylate) (PBMA) increased in direct proportion to monomer conversion. The molecular weight distribution (Mw/Mn) of PBMA was about 1.3. The initiator efficiency, f, was close to 1.0, which indicated that no side reactions occurred. A copper complex, CuCl/bpy, reversibly activated the dormant polymer chains via a N,N‐diethyldithiocarbamate (DC) transfer reaction such as Cu(DC)Cl/bpy, and it was dynamic equilibrium that was responsible for the controlled behavior of the polymerization of BMA. On the basis of this information, we established a preparation method of nanocylinders consisting of graft block copolymers by grafting from photoinduced ATRP of multifunctional polystyrene having DC pendant groups with vinyl monomers [first monomer, BMA; second monomer, styrene or methyl methcrylate (MMA)]. We have carried out the characterization of such nanocylinders in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 63–70, 2005  相似文献   

20.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号