首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The use of vinylformamide and 1,3‐divinylimidazolidin‐2‐one, bisvinylethylene‐urea (BVU), as well as of the poly(vinylformamide‐vinylamine) copolymer (PVFA‐co‐PVAm) for silica surface functionalization has been investigated. Various procedures such as grafting from, crosslinking surface polymerization, and post‐functionalization of adsorbed PVAm chains have been experimentally applied. The advantage of the different synthetic methods is discussed with regard to the resulting surface structure of the organic/inorganic hybrid materials.  相似文献   

2.
Porous poly(N‐isopropylacrylamide) hydrogels were prepared by the free‐radical polymerization of its monomer and a suitable crosslinker in the presence of spherical silica particles of different sizes (74 and 1600 nm) and by the subsequent acid extraction of silica. The yields were 81–83%, and the yields were not affected by the silica content. Scanning electron microscopy observations revealed the porous structure of the hydrogels. Porous and nonporous hydrogels showed volume phase transitions from swelling states to deswelling states at approximately 30 °C, as analyzed by the ratio of the diameter of cylinder‐shaped hydrogels to that of the glass tube used for the hydrogel preparation at the corresponding temperature. Deswelling, which was analyzed by rapid changes in the temperature of the aqueous media from 20 to 40 °C, was facilitated by decreased silica particle size and increased silica content. The deswelling rate constant of the hydrogel prepared with 74‐nm silica at 10 v/v % (silica/solvent) was more than 1500 times greater than that of conventional hydrogels. Swelling was similarly analyzed through changes in the temperature from 40 to 20 °C and was independent of the pore structure. The deswelling–swelling cycle was repeatable with reasonable reproducibility. Moreover, the mechanical strength of the porous hydrogels was significantly maintained compared with that of conventional nonporous hydrogels. This method produced thermoresponsive hydrogels of suitable mechanical strength and remarkable deswelling properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4228–4235, 2002  相似文献   

3.
A novel series of temperature‐ and pH‐sensitive hydrogels based on poly(2‐ethyl‐2‐oxazoline) and three‐arm poly(D,L ‐lactide) were synthesized via photocopolymerization. For the creation of polymeric networks, two types of macromers terminated with methacrylate groups were prepared: poly(2‐ethyl‐2‐oxazoline) dimethacrylate and three‐arm poly(D,L ‐lactide) trimethacrylate. The chemical structures were analyzed with 1H NMR and Fourier transform infrared techniques. The thermal behaviors, morphologies, and swelling properties were measured for the characterization of the polymeric networks. All the poly(2‐ethyl‐2‐oxazoline)/three‐arm poly(D,L ‐lactide)hydrogels provided high water retention capacity and exhibited reversible swelling–shrinking behavior in response to temperature and pH variations. The hydrogels with higher poly(2‐ethyl‐2‐oxazoline) dimethacrylate contents were more effective in raising the swelling ratio and temperature and pH sensitivity. However, higher contents of three‐arm poly(D,L ‐lactide) trimethacrylate produced larger particles and pore sizes in the hydrogels. This study effectively proves that this unique combination of water swellability and biodegradability provides hydrogels with a much wider range of applications in biomedical fields. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1112–1121, 2002  相似文献   

4.
Free radical polymerization of N‐isopropylacrylamide (NIPAAm) and crosslinker solutions, which were fulfilled in silica particles with an interpenetrated and nanometer‐sized porous structure (a diameter of 3 mm and mean pore sizes of 15, 30, and 50 nm), fabricated hybrids of organic hydrogels and inorganic silica. Differential scanning calorimetric analyses of the hybrids revealed that silica components affected the thermoresponsive properties of polyNIPAAm hydrogels. Porous polyNIPAAm hydrogels were prepared by the subsequent acid treatment of the hybrids to remove silica. Transmission Fourier transformed infrared spectra indicated the selective extraction of silica. Scanning electron microscopic observation of the hydrogels confirmed the porous structure. The deswelling rate of porous hydrogels was 7 times larger than that of conventional hydrogels and increased with increasing the pore size of silica used. However, the swelling was not affected by the pore formation. The thermoresponsiveness of porous polyNIPAAm hydrogels could be regulated by the pore size. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3542–3547, 2002  相似文献   

5.
 The chemical synthesis and the physicochemical properties of stable poly(vinyl formamide-co-vinyl amine)/silica hybrid particles are presented. Copolymers of poly(vinyl formamide) (PVFA) and poly(vinyl amine) (PVAm) and their protonated forms were adsorbed onto silica from aqueous solutions. The influences of the pH strength and the ion concentration of the aqueous solution as well as the copolymer composition (degree of hydrolyzation of PVFA), and the molecular mass on the adsorption process were investigated by electrokinetic measurements, potentiometric titration, and quantitative elemental analyses. Silica surface-charge neutralization is achieved at a pH strength above 10 for highly hydrolyzed (95%) PVFA polymers. Decreasing the amino content in the PVAm chain shifts successively both the point of zero charge and the isoelectric point to lower pH values. PVFA-co-PVAm layers onto silica are adsorbed weakly. To fix these layers irreversibly, cross-linking reactions with (4,4′-diisocyanate)diphenyl methane were carried out on the surface of solid PVFA-co-PVAm/silica hybrid particles suspended in acetone. The cross-linking reaction, which is connected with the conversion of amino groups, is also a tool to control the surface charge of the PVFA-co-PVAm/silica hybrids. X-ray photoelectron spectroscopy and solid-state 13C cross-polarization magic-angle spinning NMR spectroscopy were used to obtain information on the number of and the structure of the functionalized polyelectrolyte layers on silica. The success of cross-linking was also shown by the results of these spectroscopic methods. Received: 28 June 1999 /Accepted: 27 August 1999  相似文献   

6.
Poly(vinyl amine) (PVAm)‐based amphiphilic glycopolymers were synthesized by a two‐step method, that is dextran molecules (Dex, Mw = 1500) were attached to the PVAm backbone by reacting amine groups with dextran lactone, and then, hexanoyl groups (Hex) were attached by reacting the PVAm free amine groups with N‐(hexanoyloxy)succinimide. By adjustment of the feed ratios of Dex/Hex, amphiphilic comb‐like glycopolymers with various hydrophilic and hydrophobic balances were prepared, and their structures were characterized by 1H NMR. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)‐coated coverslips by water contact angle measurements. The results show that the amphiphilic glycopolymers need about 20 mol % of dextran attachment to make an effective hydrophilic coating. In comparison with the one‐step reaction by addition of dextran lactone and alkyl succinimide simultaneously, the two‐step approach can attach Dex on PVAm as high as possible in the first step, and offers quantitative advantages in controlling the ratio of hydrophilic and hydrophobic chains along the PVAm backbone, resulting in increased water solubility for the final amphiphilic glycopolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 192–199, 2006  相似文献   

7.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

8.
The solubility parameters of pure poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxyethyl methacrylate/itaconic acid) [P(HEMA/IA)] hydrogels were determined by 20 solvents with various solubility parameters in swelling experiments. The solubility parameter of pure PHEMA was 26.93 ± 0.46 (MPa)1/2. The effect of mole percentages of itaconic acid (IA) in P(HEMA/IA) hydrogels on the solubility parameter was investigated. The measured values were compared to literature and solubility values theoretically determined by group contribution values of van Krevelen and Hoy. The incorporation of IA into the hydrogel system slightly increased the solubility parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1995–2003, 2002  相似文献   

9.
Thermosensitive guar‐based hydrogels are obtained in water solutions by copper‐catalyzed 1,3‐dipolar cycloaddition between alkyne‐functionalized guars and α,ω‐diazido‐poly[(ethylene glycol)‐co‐(propylene glycol)]. Characterization by TGA, HR‐MAS 1H NMR, and rheology have shown that hydrogels with tunable physico‐chemical properties, such as crosslinking density, viscoelasticity, swelling ratio, and so forth, could be obtained by varying the guar molar mass, the degree of alkyne functionality, the guar/crosslinker weight ratio, and the reaction temperature. Based on swelling measurements, it has been shown that the thermal sensitiveness of guar‐based hydrogels is fast, reversible, and intimately related to the weight fraction of the thermosensitive crosslinker in the network. Finally, the monitoring of doxorubicin hydrochloride release has demonstrated the potential of these hydrogels as temperature‐dependent drug release devices. The robust, efficient, and orthogonal approach described herein represents a general approach towards the development of well‐controlled guar‐based hydrogels using α,ω‐diazido crosslinkers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2733–2742, 2010  相似文献   

10.
Ionic organic/siloxane networks containing quaternary ammonium salt (QAS) sequences in the cross‐linking bridges were obtained by the Menshutkin reaction of oligo(N,N‐dimethylaminoethylmethacrylate) (ODMAEM) with a telechelic chloroalkylated siloxane (CAS), such as 1,3‐bis‐(chloromethyl)‐1,1,3,3‐tetramethyldisiloxane, 1,3‐bis‐(chloropropyl)‐1,1,3,3‐tetramethyldisiloxane, and α,ω‐bis(chloromethyl) oligodimethylsiloxane. The resulted structures were investigated by Fourier transform infrared spectroscopy emphasizing the presence of both organic and siloxane moieties. The thermogravimetric analysis under inert atmosphere of the networks, besides the thermal stability, gave also information on the composition of hybrid hydrogels. The morphology of the lyophilized networks was evidenced by environmental scanning electron microscopy, as a function of CAS structure and CAS: ODMAEM feed molar ratio. The swelling response of the ionic networks in water as a function of pH and counterion nature and concentration as well as the water vapors sorption capacity in dynamic regime were evaluated. The properties of the ionic hybrid hydrogels were correlated with the reactants feed molar ratio and concentration of the reaction mixture, CAS type, and the presence of a catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

11.
In this work we propose a new crosslinking agent and the method to use it for the synthesis of acrylate based hydrogels. The use of this diacrylate of glycerol, synthesized in our laboratory, allows the generation of materials with well defined micro‐structures in the dry state, unique meso‐ and macro‐structures during swelling, and enhanced mechanical properties and swelling capacity in water. These properties depend on the crosslinking agent concentration, as well as synthesis thermal history. Poly(acrylamide‐co‐acrylic acid) hydrogels are commonly crosslinked with N, N′‐methylenebisacrylamide or N‐isopropylacrylamide. Here we obtain and use a new crosslinking agent, obtained from the reaction between glycerol and acrylic acid to produce a Diacrylate of glycerol (DAG). Two synthesis methods at equivalent molar ratio of acrylamide/acrylic acid (AM/AA) were analyzed. The mechanical properties, the swelling capacity, and the morphology at microscale of these hydrogels showed a well defined transition at a critical concentration of crosslinking agent. DAG induces the generation of hydrogels with hierarchichal structure. The micro‐structure surface morphology was investigated by scanning electron microscopy, the meso‐structure by polarized light microscopy and the macro‐structure by CCD imaging. The hydrogels with hierarchical structures showed improved mechanical properties when compared with structureless hydrogels. Control of the microstructure allows the generation of materials for different applications, i.e. templates or smart materials that interact with electromagnetic radiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2667–2679, 2008  相似文献   

12.
A novel one‐step approach is reported to prepare thermosensitive hydrogels simply by using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD)/glycidyl methacrylate (GMA)/N‐isopropylacrylamide (NIPAM) system. From GMA and HP‐β‐CD, HP‐β‐CD/GMA inclusion complex was prepared and identified with NMR, FTIR, and UV‐vis spectroscopies. GMA in the form of HP‐β‐CD/GMA complex was copolymerized with NIPAM in water with K2S2O8 as initiator, yielding hydrogels designated as poly(NIPAM‐CD‐GMA). The inclusion of CD in the hydrogels was confirmed by FTIR spectroscopy. The contents of CD and GMA placed considerable influence on the swelling ratio and temperature‐sensitivity of the produced hydrogels. The hydrogels bearing CD moieties showed higher swelling ratio and temperature‐sensitivity when compared with that without CD. The porous structure of the hydrogels containing CD was observed in the SEM images. Relevant mechanism of the ring‐opening reaction of epoxide groups in GMA, the subsequent crosslinking reactions and the formation of hydrogels containing CD moieties were proposed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2193–2201, 2008  相似文献   

13.
Composite hydrogels—macroscopic hydrogels with embedded microgel particles—are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH‐induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH‐ and thermosensitive poly(N‐isopropylacrylamide‐co‐acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH‐induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH? into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH‐induced swelling of this film is comparable to that of OH? diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.  相似文献   

14.
A facile synthetic strategy was developed for the preparation of thermoresponsive nanocomposite hydrogels comprising crosslinked chitosan (CS) networks and poly(N‐isopropylacrylamide) [p(NIPAAm)] nanogels. First, thermoresponsive p(NIPAAm) nanogels were synthesized via emulsion polymerization. The p(NIPAAm) nanogels were introduced into methacrylamide CS (MC) solution and the free‐radical initiated crosslinking reaction of MC produced nanogel‐embedded hydrogels. The last step involves the loading of the antibacterial model drug levofloxacin (LFX) into the prepared nanocomposite hydrogels by allowing the preformed hydrogels to swell to equilibrium in the drug's aqueous solution. The integration of p(NIPAAm) nanogel into CS networks facilitates thermoresponsive release of LFX with an enhancement of the drug‐loading capacity within the hydrogel. Notably, thermoresponsive drug‐release was achieved without unwarranted modification of the hydrogel's dimension and shape, although an increase in temperature caused the collapse of the p(NIPAAm) nanogels. The thermoresponsive property of the investigated nanocomposite hydrogel is beneficial and may offer broad opportunities for drug temperature‐triggered release for clinical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1907–1914  相似文献   

15.
A series of hydrophobically modified poly(acrylic acid) gels were prepared by the radical copolymerization of acrylic acid and small amounts of hydrophobic comonomers, 2‐(N‐ethylperfluorooctane‐sulfoamido)ethyl methacrylate and lauryl acrylate, in tert‐butanol. The effects of the fractions and species of hydrophobes on hydrophobic association were determined. The hydrophobic association within the hydrophobically modified gels was proven with measurements of swelling and fluorescence as well as Fourier transform infrared spectroscopy. Fluorocarbon‐modified hydrogels showed stronger hydrophobicity than hydrocarbon‐modified hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1236–1244, 2002  相似文献   

16.
Dual responsive cyclotriphosphazene (CTP)‐based hydrogels have been synthesized for a controlled release of FU, a hydrophilic drugs. These hydrogels composed of mono (methacryloyl‐2‐ethoxy)‐pentakis(N1,N1‐dimethylpropane‐1,3‐diamino)‐cyclotriphosphazene (HEMA (DMPDA)5CP), acryl amide and pectin were synthesized by free radical polymerization method using methylenebisacrylamide cross linker. The CTP hydrogels were characterized to understand the structure, drug nature in the network and morphology by FTIR, DSC, XRD and SEM, respectively. In this paper, the swelling (dynamic and equilibrium) properties of cyclotriphosphazene hydrogels were investigated, showing dual (pH and thermo) responsiveness and large variation in the swelling capacity. Based on these results the structural parameters of the hydrogel networks such as the average molecular weight between cross‐links (Mc) and polymer–solvent interaction parameter (χ) were determined. The CTP hydrogels has high FU loading efficiency 65 ± 0.5. In‐vitro FU release of these hydrogels was controlled for about 24 hr also hydrogel showed a distinct initial burst. The CTP hydrogels are bearing both hydrophilic groups of pectin and hydrophobic groups of CTP exhibited dual responsive behaviors with pH and temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The swelling capacity and release rate of two homologous drugs, theophylline and aminophylline, from acrylic acid/n‐alkyl methacrylate hydrogels have been studied. The maximum equilibrium swelling increases as the molar fraction of acrylic acid or the chain length of the methacrylate in the hydrogels increases. Water diffusion to the hydrogels is non‐Fickian. Both drugs are released from the fully swollen hydrogels according to Fick's law. However, the drug release from xerogels deviates from Fick's law, especially for aminophylline. As expected because of its larger size, aminophylline diffuses more slowly than theophylline under similar experimental conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2756–2765, 2004  相似文献   

18.
Macroporous, temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels were synthesized with poly(ethylene glycol)s (PEGs; molecular weight = 2000–6000) as the pore‐forming agents. The influence of the molecular weight and PEG content on the responsive kinetics of these macroporous hydrogels was investigated. The PEG‐modified PNIPAAm hydrogels were characterized by the swelling ratio, deswelling–reswelling kinetics, Fourier transform infrared, and differential scanning calorimetry. The morphology of these hydrogels was analyzed with scanning electron microscopy. The prepared macroporous hydrogels exhibited some unique properties in comparison with the gels with low molecular weight PEGs (molecular weight < 2000) as the pore‐forming agents. In addition, a preliminary study on the controlled release of bovine serum albumin from these macroporous hydrogels was carried out. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 152–159, 2003  相似文献   

19.
We investigated the effect of charge densities of the gel network and ionic strength of solution on swelling behaviors of ionized gels. We used the modified double‐lattice model, Flory–Erman's elastic model, and the ideal Donnan theory to describe swelling behaviors of the electrolyte bounded hydrogels. Energy parameters (?/k, δ?/k) were obtained from fitting liquid–liquid equilibria data of the linear poly‐N‐isopropylacrylamide/water system and two adjustable model parameters obtained from a nonelectrolyte hydrogel system. Calculated values agreed with experimental data for the given systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2333–2338, 2002  相似文献   

20.
Stimulus response of photopolymerized 1% and 0.5% N,N′‐methylene bisacrylamide (MBA) crosslinked 10% polyacrylamide (PAAm) hydrogels was studied in nitric acid. The hydrogels swelled exponentially to saturation in 13 h due to the osmotic pressure arising from diffusion of ions in to the gel. MBA (0.5%) gels swell more with larger time constant than 1% MBA gels due to lower bulk modulus. Diffusion coefficient of nitric acid in the hydrogel and polymer‐solvent interaction parameter were estimated from the swelling behavior and discussed. At longer times, the hydrogels deswelled linearly in nitric acid due to molecular modification of amide group by acidic hydrolysis. Degree of swelling and deswelling increase with nitric acid concentration. Raman and FTIR investigations revealed the formation of carboxylic acid due to acidic hydrolysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 710–720, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号