首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the planar and spatial N-body problems, it has been proved by Marchal and Chenciner that solutions for the minimizing problem with fixed ends are free from interior collisions. This important result has been extended by Ferrario & Terracini to Newtonian-type problems and equivariant problems. It has also been used to construct many symmetric solutions for the N-body problem. In this paper we are interested in action minimizing solutions in function spaces with free boundaries. The function spaces are imposed with boundary conditions, such that every mass point starts and ends on two transversal proper subspaces of ℝd, d≥2. We will prove that solutions for this minimizing problem with free boundaries are always free from collisions, including boundary collisions. This result can be used to construct certain classes of relative periodic solutions of the N-body problem.  相似文献   

2.
We study mappings from ℝ2 into ℝ2 whose components are weak solutions to the elliptic equation in divergence form, div (σ∇u)= 0, which we call σ-harmonic mappings. We prove sufficient conditions for the univalence, i.e., injectivity, of such mappings. Moreover we prove local bounds in BMO on the logarithm of the Jacobian determinant of such univalent mappings, thus obtaining the a.e. nonvanishing of their Jacobian. In particular, our results apply to σ-harmonic mapping associated with any periodic structure and therefore they play an important role in homogenization. Accepted October 30, 2000?Published online April 23, 2001  相似文献   

3.
Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.  相似文献   

4.
For the differential equation u″ = f(t, u, u′), where the function f: R × R 2 → R is periodic in the first variable and f (t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic solutions are found. Published in Neliniini Kolyvannya, Vol. 11, No. 4, pp. 495–500, October–December, 2008.  相似文献   

5.
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Da±jbD^{\alpha\pm\jmath\beta}, with α,βR + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.  相似文献   

6.
We consider non-linear viscous shallow water models with varying topography, extra friction terms and capillary effects, in a two-dimensional framework. Water-depth dependent laminar and turbulent friction coefficients issued from an asymptotic analysis of the three-dimensional free-surface Navier–Stokes equations are considered here. A new proof of stability for global weak solutions is given in periodic domain Ω = T2, adapting the method introduced by J. Simon in [15] for the non-homogeneous Navier–Stokes equations. Existence results for such solutions can be obtained from this stability analysis.  相似文献   

7.
We consider existence of solutions, for large times, to the Navier–Stokes equations in a rotating frame with spatially almost periodic large data provided by a sufficiently large Coriolis force. The Coriolis force appears in almost all of the models of meteorology and geophysics dealing with large-scale phenomena. To show existence of solutions for large times, we use the 1-norm of amplitudes. Existence for large times is proven by means of techniques of fast singular oscillating limits and bootstrapping from a global-in-time unique solution to the limit equation.  相似文献   

8.
We study the linear stability of smooth steady states of the evolution equation
under both periodic and Neumann boundary conditions. If a≠ 0 we assume f≡ 1. In particular we consider positive periodic steady states of thin film equations, where a=0 and f, g might have degeneracies such as f(0)=0 as well as singularities like g(0)=+∞. If a≤ 0, we prove each periodic steady state is linearly unstable with respect to volume (area) preserving perturbations whose period is an integer multiple of the steady state's period. For area-preserving perturbations having the same period as the steady state, we prove linear instability for all a if the ratio g/f is a convex function. Analogous results hold for Neumann boundary conditions. The rest of the paper concerns the special case of a=0 and power-law coefficients f(y)=y n and g(y)=ℬy m . We characterize the linear stability of each positive periodic steady state under perturbations of the same period. For steady states that do not have a linearly unstable direction, we find all neutral directions. Surprisingly, our instability results imply a nonexistence result: there is a large range of exponents m and n for which there cannot be two positive periodic steady states with the same period and volume. Accepted October 1, 1999?Published online July 12, 2000  相似文献   

9.
We consider the Vlasov‐Poisson system in a cosmological setting as studied in [18] and prove nonlinear stability of homogeneous solutions against small, spatially periodic perturbations in the L ‐norm of the spatial mass density. This result is connected with the question of how large scale structures such as galaxies have evolved out of the homogeneous state of the early universe. (Accepted June 28, 1996)  相似文献   

10.
In this paper a class of reversible analytic vector fields is investigated near an equilibrium. For these vector fields, the part of the spectrum of the differential at the equilibrium which lies near the imaginary axis comes from the perturbation of a double eigenvalue 0 and two simple eigenvalues , . In the first part of this paper, we study the 4-dimensional problem. The existence of a family of solutions homoclinic to periodic orbits of size less than μN for any fixed N, where μ is the bifurcation parameter, is known for vector fields. Using the analyticity of the vector field, we prove here the existence of solutions homoclinic to a periodic orbit the size of which is exponentially small ( of order . This result receives its significance from the still unsolved question of whether there exist solutions that are homoclinic to the equilibrium or whether the amplitudes of the oscillations at infinity have a positive infimum. In the second part of this paper we prove that the exponential estimates still hold in infinite dimensions. This result cannot be simply obtained from the study of the 4-dimensional analysis by a center-manifold reduction since this result is based on analyticity of the vector field. One example of such a vector field in infinite dimensions occurs when describing the irrotational flow of an inviscid fluid layer under the influence of gravity and small surface tension (Bond number ) for a Froude number F close to 1. In this context a homoclinic solution to a periodic orbit is called a generalized solitary wave. Our work shows that there exist generalized solitary waves with exponentially small oscillations at infinity. More precisely, we prove that for each F close enough to 1, there exist two reversible solutions homoclinic to a periodic orbit, the size of which is less than , l being any number between 0 and π and satisfying . (Accepted October 2, 1995)  相似文献   

11.
Thermocapillary- and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two-dimensional Navier-Stokes equations coupled with the energy equation. We studied the thermocapillary and buoyancy convection in the cavities, filled with low-Prandtl-number fluids, with two aspect-ratiosA=1 and 4, Grashof number up to 105 and Reynolds number ⋎Re⋎≤104. Our results show that thermocapillary can have a quite significant effect on the stability of a primarily buoyancy-driven flow, as well as on the flow structures and dynamic behavior for both additive effect (i.e., positiveRe) and opposing effect (i.e., negativeRe).  相似文献   

12.
In this paper we study the two-dimensional hydrostatic Euler equations in a periodic channel. We prove the local existence and uniqueness of H s solutions under the local Rayleigh condition. This extends Brenier’s (Nonlinearity 12(3):495–512, 1999) existence result by removing an artificial condition and proving uniqueness. In addition, we prove weak–strong uniqueness, mathematical justification of the formal derivation and stability of the hydrostatic Euler equations. These results are based on weighted H s a priori estimates, which come from a new type of nonlinear cancellation between velocity and vorticity.  相似文献   

13.
We consider the Navier–Stokes equations in a thin domain of which the top and bottom surfaces are not flat. The velocity fields are subject to the Navier conditions on those boundaries and the periodicity condition on the other sides of the domain. This toy model arises from studies of climate and oceanic flows. We show that the strong solutions exist for all time provided the initial data belong to a “large” set in the Sobolev space H 1. Furthermore we show, for both the autonomous and the nonautonomous problems, the existence of a global attractor for the class of all strong solutions. This attractor is proved to be also the global attractor for the Leray–Hopf weak solutions of the Navier–Stokes equations. One issue that arises here is a nontrivial contribution due to the boundary terms. We show how the boundary conditions imposed on the velocity fields affect the estimates of the Stokes operator and the (nonlinear) inertial term in the Navier–Stokes equations. This results in a new estimate of the trilinear term, which in turn permits a short and simple proof of the existence of strong solutions for all time.  相似文献   

14.
In this paper, the problem of the motion of a gyrostat fixed at one point under the action of a gyrostatic moment vector whose components are i (i=1,2,3) about the axes of rotation, similar to a Lagrange gyroscope is investigated. We assume that the center of mass G of this gyrostat is displaced by a small quantity relative to the axis of symmetry, and that quantity is used to obtain the small parameter ε (Elfimov in PMM, 42(2):251–258, [1978]). The equations of motion will be studied under certain initial conditions of motion. The Poincaré small parameter method (Malkin in USAEC, Technical Information Service, ABC. Tr-3766, [1959]; Nayfeh in Perturbation methods, Wiley-Interscience, New York, [1973]) is applied to obtain the periodic solutions of motion. The periodic solutions for the case of irrational frequencies ratio are given. The periodic solutions are analyzed geometrically using Euler’s angles to describe the orientation of the body at any instant t of time. These solutions are performed by our computer programs to get their graphical representations.  相似文献   

15.
We investigate the long-time behavior of viscosity solutions of Hamilton–Jacobi equations in \mathbbRn{\mathbb{R}^n} with convex and coercive Hamiltonians and give three general criteria for the convergence of solutions to asymptotic solutions as time goes to infinity. We apply the criteria to obtain more specific sufficient conditions for the convergence to asymptotic solutions and then examine them with examples. We take a dynamical approach, based on tools from weak KAM theory such as extremal curves, Aubry sets and representation formulas for solutions, for these investigations.  相似文献   

16.
We prove well-posedness for the three-dimensional compressible Euler equations with moving physical vacuum boundary, with an equation of state given by p(ρ) =  C γ ρ γ for γ > 1. The physical vacuum singularity requires the sound speed c to go to zero as the square-root of the distance to the moving boundary, and thus creates a degenerate and characteristic hyperbolic free-boundary system wherein the density vanishes on the free-boundary, the uniform Kreiss–Lopatinskii condition is violated, and manifest derivative loss ensues. Nevertheless, we are able to establish the existence of unique solutions to this system on a short time-interval, which are smooth (in Sobolev spaces) all the way to the moving boundary, and our estimates have no derivative loss with respect to initial data. Our proof is founded on an approximation of the Euler equations by a degenerate parabolic regularization obtained from a specific choice of a degenerate artificial viscosity term, chosen to preserve as much of the geometric structure of the Euler equations as possible. We first construct solutions to this degenerate parabolic regularization using a higher-order version of Hardy’s inequality; we then establish estimates for solutions to this degenerate parabolic system which are independent of the artificial viscosity parameter. Solutions to the compressible Euler equations are found in the limit as the artificial viscosity tends to zero. Our regular solutions can be viewed as degenerate viscosity solutions. Our methodology can be applied to many other systems of degenerate and characteristic hyperbolic systems of conservation laws.  相似文献   

17.
We consider the problem of 2N bodies of equal masses in for the Newtonian-like weak-force potential r −σ, and we prove the existence of a family of collision-free nonplanar and nonhomographic symmetric solutions that are periodic modulo rotations. In addition, the rotation number with respect to the vertical axis ranges in a suitable interval. These solutions have the hip-hop symmetry, a generalization of that introduced in [19], for the case of many bodies and taking account of a topological constraint. The argument exploits the variational structure of the problem, and is based on the minimization of Lagrangian action on a given class of paths.  相似文献   

18.
This paper is concerned with the time periodic solutions to the one-dimensional nonlinear wave equation with either variable or constant coefficients. By adjusting the basis of L 2 function space, we can circumvent the difficulties caused by η u  = 0 and obtain the existence of a weak periodic solution, which was posed as an open problem by Baubu and Pavel in (Trans Am Math Soc 349:2035–2048, 1997). Finally, an application to the forced Sine-Gordon equation is presented to illustrate the utility of this technique.  相似文献   

19.
We investigate the stabilization of periodic orbits of one-dimensional discrete maps by using a proportional feedback method applied in the form of pulses. We determine a range of the parameter μ values representing the strength of the feedback for which all positive solutions of the controlled equation converge to a periodic orbit.  相似文献   

20.
The existence of periodic solutions of the Navier-Stokes equations in function spaces based upon (L p())nis proved. The paper has three parts, (a) A proof of the existence of strong solutions of the evolution equation with initial data in a solenoidal subspace of (L p())n. (b) The evolution equation is restricted to a space of time periodic functions and a Fredholm integral equation on this space is formed. The Lyapunov-Schmidt method is applied to prove the existence of bifurcating time periodic solutions in the presence of symmetry. (c) The theory is applied to the bifurcation of periodic solutions from planar Poiseuille flow in the presence of symmetry (SO(2) x O(2) x S 1) yielding new results for this classic problem. The O(2) invariance is in the spanwise direction. With the periodicity in time and in the streamwise direction we find that generically there is a bifurcation to both oblique travelling waves and to travelling waves that are stationary in the spanwise direction. There are however points of degeneracy on the neutral surface. A numerical method is used to identify these points and an analysis in the neighborhood of the degenerate points yields more complex periodic solutions as well as branches of quasi-periodic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号