首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes fuzzy modelling and simulation of a supply chain (SC) in an uncertain environment, as the first step in developing a decision support system. An SC is viewed as a series of facilities that performs the procurement of raw material, its transformation to intermediate and end-products, and distribution and selling of the end-products to customers. All the facilities in the SC are coupled and interrelated in a way that decisions made at one facility affect the performance of others. SC fuzzy models and a simulator cover operational SC control. The objective is to determine the stock levels and order quantities for each inventory in an SC during a finite time horizon to obtain an acceptable delivery performance at a reasonable total cost for the whole SC. Two sources of uncertainty inherent in the external environment in which the SC operates were identified and modelled: customer demand and external supply of raw material. They were interpreted and represented by fuzzy sets. In addition to the fuzzy SC models, a special SC simulator was developed. The SC simulator provides a dynamic view of the SC and assesses the impact of decisions recommended by the SC fuzzy models on SC performance.  相似文献   

2.
This paper models supply chain (SC) uncertainties by fuzzy sets and develops a fuzzy linear programming model for tactical supply chain planning in a multi-echelon, multi-product, multi-level, multi-period supply chain network. In this approach, the demand, process and supply uncertainties are jointly considered. The aim is to centralize multi-node decisions simultaneously to achieve the best use of the available resources along the time horizon so that customer demands are met at a minimum cost. This proposal is tested by using data from a real automobile SC. The fuzzy model provides the decision maker (DM) with alternative decision plans with different degrees of satisfaction.  相似文献   

3.
Considering the inherent connection between supplier selection and inventory management in supply chain networks, this article presents a multi-period inventory lot-sizing model for a single product in a serial supply chain, where raw materials are purchased from multiple suppliers at the first stage and external demand occurs at the last stage. The demand is known and may change from period to period. The stages of this production–distribution serial structure correspond to inventory locations. The first two stages stand for storage areas for raw materials and finished products in a manufacturing facility, and the remaining stages symbolize distribution centers or warehouses that take the product closer to customers. The problem is modeled as a time-expanded transshipment network, which is defined by the nodes and arcs that can be reached by feasible material flows. A mixed integer nonlinear programming model is developed to determine an optimal inventory policy that coordinates the transfer of materials between consecutive stages of the supply chain from period to period while properly placing purchasing orders to selected suppliers and satisfying customer demand on time. The proposed model minimizes the total variable cost, including purchasing, production, inventory, and transportation costs. The model can be linearized for certain types of cost structures. In addition, two continuous and concave approximations of the transportation cost function are provided to simplify the model and reduce its computational time.  相似文献   

4.
This paper investigates the economic order quantity (EOQ) — based inventory model for a retailer under two levels of trade credit to reflect the supply chain management situation in the fuzzy sense. It is assumed that the retailer maintains a powerful position and can obtain the full trade credit offered by the supplier yet the retailer just offers a partial trade credit to customers. The demand rate, holding cost, ordering cost, purchasing cost and selling price are taken as fuzzy numbers. Under these conditions, the retailer can obtain the most benefits. Study also investigates the retailer’s inventory policy for deteriorating items in a supply chain management situation as a cost minimization problem in the fuzzy sense. The annual total variable cost for the retailer in fuzzy sense is defuzzified using Graded Mean Integration Representation method. Then the present study shows that the defuzzified annual total variable cost for the retailer is convex, that is, a unique solution exists. Mathematical theorems and algorithms are developed to efficiently determine the optimal inventory policy for the retailer. Numerical examples are given to illustrate the theorems and the algorithms. Finally, the results in this paper generalize some already published results in the crisp sense.  相似文献   

5.
Inventory record inaccuracy leads to ineffective replenishment decisions and deteriorates supply chain performance. Conducting cycle counts (i.e., periodic inventory auditing) is a common approach to correcting inventory records. It is not clear, however, how inaccuracy at different locations affects supply chain performance and how an effective cycle-count program for a multi-stage supply chain should be designed. This paper aims to answer these questions by considering a serial supply chain that has inventory record inaccuracy and operates under local base-stock policies. A random error, representing a stock loss, such as shrinkage or spoilage, reduces the physical inventory at each location in each period. The errors are cumulative and are not observed until a location performs a cycle count. We provide a simple recursion to evaluate the system cost and propose a heuristic to obtain effective base-stock levels. For a two-stage system with identical error distributions and counting costs, we prove that it is more effective to conduct more frequent cycle counts at the downstream stage. In a numerical study for more general systems, we find that location (proximity to the customer), error rates, and counting costs are primary factors that determine which stages should get a higher priority when allocating cycle counts. However, it is in general not effective to allocate all cycle counts to the priority stages only. One should balance cycle counts between priority stages and non-priority stages by considering secondary factors such as lead times, holding costs, and the supply chain length. In particular, more cycle counts should be allocated to a stage when the ratio of its lead time to the total system lead time is small and the ratio of its holding cost to the total system holding cost is large. In addition, more cycle counts should be allocated to downstream stages when the number of stages in the supply chain is large. The analysis and insights generated from our study can be used to design guidelines or scorecard systems that help managers design better cycle-count policies. Finally, we discuss implications of our study on RFID investments in a supply chain.  相似文献   

6.
Traditionally, inventory problems for the vendor and the buyer are treated separately. In modern enterprises, however, the integration of vendor–buyer inventory system is an important issue. This co-operative approach to inventory management contributes to the success of supply chain management by minimizing the joint inventory cost. The joint inventory cost and the response time can further be reduced when the buyer orders and the vendor replenishes the required items just in time (JIT) for their consumption. The inclusion of the JIT concept in this model contributes significantly to a joint inventory cost reduction. A numerical example and sensitivity analysis are carried out. The derived results show an impressive cost reduction when compared with Goyal’s model.  相似文献   

7.
In this paper, we propose a two-stage stochastic model to address the design of an integrated location and two-echelon inventory network under uncertainty. The central issue in this problem is to design and operate an effective and efficient multi-echelon supply chain distribution network and to minimize the expected system-wide cost of warehouse location, the allocation of warehouses to retailers, transportation, and two-echelon inventory over an infinite planning horizon. We structure this problem as a two-stage nonlinear discrete optimization problem. The first stage decides the warehouses to open and the second decides the warehouse-retailer assignments and two-echelon inventory replenishment strategies. Our modeling strategy incorporates various probable scenarios in the integrated multi-echelon supply chain distribution network design to identify solutions that minimize the first stage costs plus the expected second stage costs. The two-echelon inventory cost considerations result in a nonlinear objective which we linearize with an exponential number of variables. We solve the problem using column generation. Our computational study indicates that our approach can solve practical problems of moderate-size with up to twenty warehouse candidate locations, eighty retailers, and ten scenarios efficiently.  相似文献   

8.
This paper investigates the twin effects of supply chain visibility (SCV) and supply chain risk (SCR) on supply chain performance. Operationally, SCV has been linked to the capability of sharing timely and accurate information on exogenous demand, quantity and location of inventory, transport related cost, and other logistics activities throughout an entire supply chain. Similarly, SCR can be viewed as the likelihood that an adverse event has occurred during a certain epoch within a supply chain and the associated consequences of that event which affects supply chain performance. Given the multi-faceted attributes of the decision making process which involves many stages, objectives, and stakeholders, it beckons research into this aspect of the supply chain to utilize a fuzzy multi-objective decision making approach to model SCV and SCR from an operational perspective. Hence, our model incorporates the objectives of SCV maximization, SCR minimization, and cost minimization under the constraints of budget, customer demand, production capacity, and supply availability. A numerical example is used to demonstrate the applicability of the model. Our results suggest that decision makers tend to mitigate SCR first then enhance SCV.  相似文献   

9.
In the past, economic order quantity (EOQ) and economic production quantity (EPQ) were treated independently from the viewpoints of the buyer or the vendor. In most cases, the optimal solution for one player was non-optimal to the other player. In today’s competitive markets, close cooperation between the vendor and the buyer is necessary to reduce the joint inventory cost and the response time of the vendor–buyer system. The successful experiences of National Semiconductor, Wal-Mart, and Procter and Gamble have demonstrated that integrating the supply chain has significantly influenced the company’s performance and market share (Simchi-Levi et al. (2000) [1]). Recently, Yang et al. (2007) [2] presented an inventory model to determine the economic lot size for both the vendor and buyer, and the number of deliveries in an integrated two stage supply chain. In this paper, we present an alternative approach to determine the global optimal inventory policy for the vendor–buyer integrated system using arithmetic–geometric inequality.  相似文献   

10.
This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.  相似文献   

11.
As the implementation of JIT practice becomes increasingly popular, each echelon in a supply chain tends to carry fewer inventories, and thus the whole supply chain is made more vulnerable to lost sales and/or backorders. The purpose of this paper is to recast the inventory model to be more relevant to current situations, where the penalty cost for a shortage occurrence at a downstream stage in a supply chain is continually transmitted to the upstream stages. The supplier, in this case, at the upstream of the supply chain is responsible for all the downstream shortages due to the chain reaction of its backlog. The current paper proposes a model in which the backorder cost per unit time is a linearly increasing function of shortage time, and it claims that the optimal policy for the supplier is setting the optimal shortage time per inventory cycle to minimize its total relevant cost in a JIT environment.  相似文献   

12.
针对一个动态、多级的供应链库存系统,应用系统动力学的方法,建立了供应链(s,S)库存策略下的物流成本模型,并通过动态仿真,分析了库存策略的变动对于供应链库存系统各级成员间库存供需的动态行为,提出了(s,S)策略下的供应链库存系统的有效管理方法.  相似文献   

13.
Multi-echelon inventory optimization literature distinguishes stochastic- (SS) and guaranteed-service (GS) approaches as mutually exclusive frameworks. While the GS approach considers flexibility measures at the stages to deal with stockouts, the SS approach only relies on safety stock. Within a supply chain, flexibility levels might differ between stages rendering them appropriate candidates for one approach or the other. The existing approaches, however, require the selection of a single framework for the entire supply chain instead of a stage-wise choice. We develop an integrated hybrid-service (HS) approach which endogenously determines the overall cost-optimal approach for each stage and computes the required inventory levels. We present a dynamic programming optimization algorithm for serial supply chains that partitions the entire system into subchains of different types. From a numerical study we find that, besides implicitly choosing the better of the two pure frameworks, whose cost differences can be considerable, the HS approach enables additional pipeline and on-hand stock cost savings. We further identify drivers for the preferability of the HS approach.  相似文献   

14.
Given high variability of demands for short life cycle products, a retailer has to decide about the products’ prices and order quantities from a manufacturer. In the meantime, the manufacturer has to determine an aggregate production plan involving for example, production, inventory and work force levels in a multi period, multi product environment. Due to imprecise and fuzzy nature of products’ parameters such as unit production and replenishment costs, a hybrid fuzzy multi-objective programming model including both quantative and qualitative constraints and objectives is proposed to determine the optimalprice markdown policy and aggregate production planning in a two echelon supply chain. The model aims to maximize the total profit of manufacturer, the total profit of retailer and improving service aspects of retailing simultaneously. After applying appropriate strategies to defuzzify the original model, the equivalent multi-objective crisp model is then solved by a fuzzy goal programming method. An illustrative example is also provided to show the applicability and usefulness of the proposed model and solution method.  相似文献   

15.
This paper considers the cost-effective inventory control of work-in-process (WIP) and finished products in a two-stage distributed manufacturing system. The first stage produces a common WIP, and the second stage consists of several production sites that produce differentiated products with different capacity and service level requirements. The unit inventory holding cost is higher at the second stage. This paper first uses a network of inventory-queue model to evaluate the inventory cost and service level achievable for given inventory control policy, and then derives a very simple algorithm to find the optimal inventory control policy that minimizes the overall inventory holding cost and satisfies the given service level requirements. Some managerial insights are obtained through numerical examples.  相似文献   

16.
An efficient inventory planning approach in today’s global trading regime is necessary not only for increasing the profit margin, but also to maintain system flexibility for achieving higher customer satisfaction. Such an approach should hence be comprised of a prudent inventory policy and clear satisfaction of stakeholder’s goals. Relative significance given to various objectives in a supply chain network varies with product as well as time. In this paper, a model is proposed to fill this void for a single product inventory control of a supply chain consisting of three echelons. A generic modification proposed to the membership functions of the fuzzy goal-programming approach is used to mathematically map the aspiration levels of the decision maker. The bacterial foraging algorithm has been modified with enhancement of the algorithms’ capability to map integer solution spaces and utilised to solve resulting fuzzy multi-objective function. An illustrative example comprehensively covers various decision scenarios and highlights the underlying managerial insights.  相似文献   

17.
This research deals with a distributive or tree-type three-echelon production-distribution supply chain system with allowable backorder. Allowing backorder could reduce the total of a production-distribution system by reducing holding cost due to the lower average inventory, even though backorders carry some cost and lower a company's goodwill. The main purpose of this research is to develop replenishment policies for a tree-type three-echelon supply chain system with allowable backorder. The supply chain network is composed of a producer, multiple distributors, and multiple retailers. This research attempts to improve service rate by reducing the backorder at the retailer level. The distributors are allowed to ship product to retailer quicker in order to reduce backorder. The total cost function of the proposed model is developed. Since the total cost function contains some integer variables, differentiating the function with respect to the variables could not be used as a basis to solve for the optimal solutions. A branching search process was utilized to find the integer solutions. A numerical example is used to demonstrate improvement in service rate and total cost using the model.  相似文献   

18.
The bullwhip effect in particular, and supply chain volatility in general, has been the subject of much analytical and empirical investigation by researchers. One goal of this work has been to determine supply chain designs and policies that minimize volatility. Using a system dynamics approach, we use three distinct supply chain volatility metrics to compare the ability of two alternative pipeline inventory management policies to respond to a demand shock. The results indicate that no one policy dominates on all three metrics of supply chain volatility. A simplistic static pipeline policy minimizes the bullwhip effect and lessens the likelihood of on-hand inventory oscillations, while a more sophisticated dynamic pipeline policy may converge more rapidly to the new equilibrium. In addition, simulation results suggest that the dynamic policy provides better customer service through fewer stockouts and backorders.  相似文献   

19.
One approach to supply chain coordination is early order commitment, whereby a retailer commits to purchase a fixed-order quantity at a fixed delivery time before demand uncertainty is resolved. In this paper, we develop an analytical model to quantify the cost savings of an early order commitment in a two-level supply chain where demand is serially correlated. A decision rule is derived to determine whether early order commitment will benefit the supply chain, and accordingly to determine the optimal timing for early commitment. Our results indicate that the supply chain would experience greater savings from early order commitment when – (a) the inventory item receives less value-added activities at the retailer site; (b) the manufacturing lead time is short; (c) demand correlation over time is positive but weak; or (d) the delivery lead time is long (if a condition exists). We also propose a rebate scheme for the supply chain partners to share the gains of practicing early order commitment.  相似文献   

20.
We propose an approach to model and solve the joint problem of facility location, inventory allocation and capacity investment in a two echelon, single-item, service parts supply chain with stochastic demand. The objective of the decision problem is to minimize the total expected costs associated with (1) opening repair facilities, (2) assigning each field service location to an opened facility, (3) determining capacity levels of the opened repair facilities, and (4) optimizing inventory allocation among the locations. Due to the size of the problem, computational efficiency is essential. The accuracy of the approximations and effectiveness of the approach are analyzed with two numerical studies. The approach provides optimal results in 90% of scenarios tested and was within 2% of optimal when it did not.We explore the impact of capacity utilization, inventory availability, and lead times on the performance of the approach. We show that including tactical considerations jointly with strategic network design resulted in additional cost savings from 3% to 12%. Our contribution is the development of a practical model and approach to support the decision making process of joint facility location and multi-echelon inventory optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号