共查询到20条相似文献,搜索用时 9 毫秒
1.
《Current Opinion in Colloid & Interface Science》2001,6(1):40-48
Chemically structured surfaces are discussed which consist of patterns of lyophilic and lyophobic surface domains. Wetting layers on top of these surfaces attain a variety of morphologies and undergo morphological wetting transitions. One convenient way to explore these transitions experimentally is by changing the total volume of the wetting layer. 相似文献
2.
Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces 总被引:2,自引:0,他引:2
Superhydrophobicity of biological surfaces has recently been studied intensively with the aim to design artificial surfaces. It has been revealed that nearly all of the superhydrophobic surfaces consist of the intrinsic hierarchical structures. However, the role of such structures has not been completely understood. In this study, different scales of hierarchical structures have been thermodynamically analyzed using a 2-D model. In particular, the free energy (FE) and free energy barrier (FEB) for the composite wetting states are calculated, and the effects of relative pillar height (h(r)) and relative pillar width (a(r)) on contact angle (CA) and contact angle hysteresis (CAH) have been investigated in detail. The results show that if the geometrical parameter ratio is the same (e.g., a:b:h = 2:2:1), the equilibrium CA for the composite of the three-, dual-, and single- scale roughness structures is 159.8°, 151.1°, and 138.6°, respectively. Furthermore, the nano- to microstructures of such surfaces can split a large FEB into many small ones and hence can decrease FEB; in particular, a hierarchical geometrical structure can lead to a hierarchical "FEB structure" (e.g., for a dual-scale roughness geometrical structure, there is also a dual-scale FEB structure). This is especially important for a droplet to overcome the large FEBs to reach a stable superhydrophobic state, which can lead to an improved self-cleaning property. Moreover, for extremely small droplets, the secondary or third structure (i.e., submicrostructure or nanostructure) can play a dominant role in resisting the droplets into troughs, so that a composite state can be always thermodynamically favorable for such a hierarchical structured system. 相似文献
3.
Wetting of a sessile droplet on structured or patterned surface can be found in a broad range of applications. The researchers have been promoted to keep working on the topic. The review is on the basis of the recent experimental advances on the sessile droplet wetting on the hydrophobic, hydrophilic, or combined hydrophobic and hydrophilic surfaces under isothermal conditions, and on heating or cooling substrates having nonisothermal conditions. More attention has been paid on the wetting configuration between the sessile droplet and the structured substrate; the research gap has been discussed on identifying the three-phase line shape. Further, the three-dimensional measurement for the sessile droplets on the patterned surfaces with focusing more on the contact line of sessile droplets might reveal new physical insights. This review targets at building a holistic overview on the sessile droplet wetting behaviors on the structured substrate in the past 2 years. 相似文献
4.
A series of surfaces with microscale checkerboard patterns consisting of continuous central lines and discontinuous lateral lines were fabricated. The surface wetting properties of these checkerboard patterns were found to be anisotropic. The central continuous lines were found to have a strong influence on the dynamic wetting properties and moving trajectories of the water droplets. The droplets move more easily in the direction parallel to the central continuous lines and less easily in the direction perpendicular to the central continuous lines. Meanwhile, the droplets' moving path tends to incline toward the central continuous lines from a tilting direction. When the microsurface was modified with a layer of nanowire, the surface wettability was found to be isotropic and superhydrophobic. 相似文献
5.
A phase-field approach to the dynamics of liquid-solid interfaces that evolve due to precipitation and/or dissolution is presented. For the purpose of illustration and comparison with other methods, phase-field simulations were carried out assuming first order reaction (dissolution/precipitation) kinetics. In contrast to solidification processes controlled by a temperature field that is continuous across the solid/liquid interface (with a discontinuous temperature gradient), precipitation/dissolution is controlled by a solute concentration field that is discontinuous at the solid/liquid interface. The sharp-interface asymptotic analysis of the phase-field equations for solidification [A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998)] has been modified for precipitation/dissolution processes to demonstrate that the phase-field equations converge to the proper sharp-interface limit. The mathematical model has been validated for a one-dimensional precipitation/dissolution problem by comparison with the analytical solution. 相似文献
6.
Bhushan B 《Langmuir : the ACS journal of surfaces and colloids》2012,28(3):1698-1714
Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. Various natural objects which provide functionality of commercial interest have been characterized to understand how a natural object provides functionality. We have modeled and fabricated structures in the lab using nature's route and developed optimum structures. Once it is understood how nature does it, optimum structures have been fabricated using smart materials and fabrication techniques. This feature article provides an overview of four topics: Lotus effect, rose petal effect, gecko feet, and shark skin. 相似文献
7.
The wetting of polydimethylsiloxane oil drops on the surfaces of anionic surfactant sodium dodecylsulfate solutions is studied systematically by changing the bulk surfactant concentration. The wetting state changes from complete wetting to pseudopartial wetting at 0.3 cmc (critical micelle concentration) surfactant concentration and there is a reentrant transition back to complete wetting at 1.4 cmc. The measured free energy is consistent with the prediction of the wetting theory. The interaction potential minimum of the two surfaces of the oil film disappears at the reentrant point, which is speculated to be an effect of micelle formation in the solution. 相似文献
8.
Mohammadi R Wassink J Amirfazli A 《Langmuir : the ACS journal of surfaces and colloids》2004,20(22):9657-9662
The effect of surfactants on wetting behavior of super-hydrophobic surfaces was investigated. Super-hydrophobic surfaces were prepared of alkylketene dimer (AKD) by casting the AKD melt in a specially designed mold. Time-dependent studies were carried out, using the axisymmetric drop shape analysis method for contact angle measurement of pure water on AKD surfaces. The results show that both advancing and receding contact angles of water on the AKD surfaces increase over time ( approximately 3 days) and reach the values of about 164 and 147 degrees , respectively. The increase of contact angles is due to the development of a prickly structure on the surface (verified by scanning electron microscopy), which is responsible for its super-hydrophobicity. Aqueous solutions of sodium acetate, sodium dodecyl sulfate, hexadecyltrimethylammonium bromide, and n-decanoyl-n-methylglucamine were used to investigate the wetting of AKD surfaces. Advancing and receding contact angles for various concentrations of different surfactant solutions were measured. The contact angle results were compared to those of a number of pure liquids with surface tensions similar to those of surfactant solutions. It was found that although the surface tensions of pure liquids and surfactant solutions at high concentrations are similar, the contact angles are very different. Furthermore, the usual behavior of super-hydrophobic surfaces that turn super-hydrophilic when the intrinsic contact angle of liquid on a smooth surface (of identical material) is below 90 degrees was not observed in the presence of surfactants. The difference in the results for pure liquids and surfactant solutions is explained using an adsorption hypothesis. 相似文献
9.
Superwetting of structured surfaces 总被引:1,自引:0,他引:1
Extrand CW Moon SI Hall P Schmidt D 《Langmuir : the ACS journal of surfaces and colloids》2007,23(17):8882-8890
Superwetting of structured surfaces, sometimes referred to as hemi-wicking, was studied both experimentally and theoretically. Structured substrates with regular arrays of square pillars or frustra were machined from graphite blocks and then treated to render them lyophilic. Liquids spread over these surfaces to produce noncircular wetting areas. If the channels between the features were made shallower or narrower, liquids wicked more and spread over a larger area. The inherent wettability of the graphite was relatively unimportant; large differences in the contact angles had little influence on the spreading. Practically, this means that, to achieve extensive coverage, near-zero contact angles are not required. A combination of the appropriate surface structure and moderate inherent wettability can effectively flatten liquids, spreading them over very large areas. 相似文献
10.
11.
On rough surfaces, two distinct wetting modes can appear. These two states are usually described by the theories of Cassie (drops suspended on top of roughness features) and Wenzel (drops impaled on roughness features). Whereas the wetting transition from the Cassie to the Wenzel state has been relatively well studied both experimentally and theoretically, the question of whether metastable Wenzel drops exist and how they transition to the Cassie state has remained open. In this work, we study the wetting behavior of microstructured post surfaces coated with a hydrophobic fluoropolymer. Through condensation, the formation of metastable Wenzel droplets is induced. We show that under certain conditions drops can transition from the Wenzel to the Cassie state. 相似文献
12.
Shirtcliffe NJ McHale G Newton MI Perry CC 《Langmuir : the ACS journal of surfaces and colloids》2005,21(3):937-943
Rough and patterned copper surfaces were produced using etching and, separately, using electrodeposition. In both of these approaches the roughness can be varied in a controlled manner and, when hydrophobized, these surfaces show contact angles that increase with increasing roughness to above 160 degrees . We show transitions from a Wenzel mode, whereby the liquid follows the contours of the copper surface, to a Cassie-Baxter mode, whereby the liquid bridges between features on the surface. Measured contact angles on etched samples could be modeled quantitatively to within a few degrees by the Wenzel and Cassie-Baxter equations. The contact angle hysteresis on these surfaces initially increased and then decreased as the contact angle increased. The maximum occurred at a surface area where the equilibrium contact angle would suggest that a substantial proportion of the surface area was bridged. 相似文献
13.
Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, under the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed. 相似文献
14.
Patterned surfaces with microwrinkled surface structures were prepared by thermally evaporating thin aluminum (10-300 nm thick) (Al) layers onto thick prestrained layers of a silicone elastomer and subsequently releasing the strain. This resulted in the formation of sinusoidal periodic surface wrinkles with characteristic wavelengths in the 3-42 μm range and amplitudes as large as 3.6 ± 0.4 μm. The Al thickness dependence of the wrinkle wavelengths and amplitudes was determined for different values of the applied prestrain and compared to a recent large-amplitude deflection theory of wrinkle formation. The results were found to be in good agreement with theory. Samples with spatial gradients in wrinkle wavelength and amplitude were also produced by applying mechanical strain gradients to the silicone elastomer layers prior to deposition of the Al capping layers. Sessile water droplets that were placed on these surfaces were found to have contact angles that were dependent upon their position. Moreover, these samples were shown to direct the motion of small water droplets when the substrates were vibrated. 相似文献
15.
Bormashenko E 《Journal of colloid and interface science》2011,360(1):317-319
The problem of wetting is discussed in the framework of the variational approach. Derivation of the general equation describing the wetting of rough chemically homogenous surfaces is presented. The equation considers effects related to the line tension at the perimeter of the drop and at the details of the relief. The equation comprises as particular cases the Cassie and Wenzel equations and the equation proposed recently by Wong and Ho. 相似文献
16.
Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contact line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding of this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of anisotropic wetting and to propose a methodology to quantify the apparent contact angles and the drop shape. We report a theoretical and an experimental study of wetting of surfaces with parallel groove geometry. 相似文献
17.
Mackel MJ Sanchez S Kornfield JA 《Langmuir : the ACS journal of surfaces and colloids》2007,23(1):3-7
The advancing contact angle (thetaadv) of water on thin films ( approximately 1 microm) of poly(ethylene glycol) (PEG) with fluoroalkyl endgroups (6 kg/mol PEG with 10-carbon fluoroalkyl, denoted 6KC10) changes strongly with relative humidity (RH). Films of 6KC10 on silicon wafers pretreated with a fluorinated alkylsilane (TFOS) display thetaadv increasing from 75 degrees at 12% RH to 95 degrees at 94% RH. The surprising transition to nonwetting character at high humidity is attributed to fluoroalkyl groups ordering at the air-hydrogel interface when they are liberated by dissolution of PEG crystallites above 85% RH. When water is withdrawn from a drop on 6KC10, the contact line does not recede. This extreme hysteresis is attributed to restructuring of the gel to bury the fluoroalkyl groups when in contact with water. 相似文献
18.
Wettability is a tendency for a liquid to spread on a solid substrate and is generally measured in terms of the angle (contact angle) between the tangent drawn at the triple point between the three phases (solid, liquid and vapour) and the substrate surface. A liquid spreading on a substrate with no reaction/absorption of the liquid by substrate material is known as non-reactive or inert wetting whereas the wetting process influenced by reaction between the spreading liquid and substrate material is known as reactive wetting. Young's equation gives the equilibrium contact angle in terms of interfacial tensions existing at the three-phase interface. The derivation of Young's equation is made under the assumptions of spreading of non-reactive liquid on an ideal (physically and chemically inert, smooth, homogeneous and rigid) solid, a condition that is rarely met in practical situations. Nevertheless Young's equation is the most fundamental starting point for understanding of the complex field of wetting. Reliable and reproducible measurements of contact angle from the experiments are important in order to analyze the wetting behaviour. Various methods have been developed over the years to evaluate wettability of a solid by a liquid. Among these, sessile drop and wetting balance techniques are versatile, popular and provide reliable data. Wetting is affected by large number of factors including liquid properties, substrate properties and system conditions. The effect of these factors on wettability is discussed. Thermodynamic treatment of wetting in inert systems is simple and based on free energy minimization where as that in reactive systems is quite complex. Surface energetics has to be considered while determining the driving force for spreading. Similar is the case of spreading kinetics. Inert systems follow definite flow pattern and in most cases a single function is sufficient to describe the whole kinetics. Theoretical models successfully describe the spreading in inert systems. However, it is difficult to determine the exact mechanism that controls the kinetics since reactive wetting is affected by a number of factors like interfacial reactions, diffusion of constituents, dissolution of the substrate, etc. The quantification of the effect of these interrelated factors on wettability would be useful to build a predictive model of wetting kinetics for reactive systems. 相似文献
19.
Dutschk V Sabbatovskiy KG Stolz M Grundke K Rudoy VM 《Journal of colloid and interface science》2003,267(2):456-462
Static and dynamic contact angles of aqueous solutions of three surfactants--anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethylammonium bromide (DTAB), and nonionic pentaethylene glycol monododecyl ether (C(12)E(5))--were measured in the pre- and micellar concentration ranges on polymer surfaces of different surface free energy. The influence of the degree of substrate hydrophobicity, concentration of the solution, and ionic/nonionic character of surfactant on the drop spreading was investigated. Evaporation losses due to relatively low humidity during measurements were taken into account as well. It was shown that, in contrast to the highly hydrophobic surfaces, contact angles for ionic surfactant solutions on the moderately hydrophobic surfaces strongly depend on time. As far as the nonionic surfactant is considered, it spreads well over all the hydrophobic polymer surfaces used. Moreover, the results obtained indicate that spreading (if it occurs) in the long-time regime is controlled not only by the diffusive transport of surfactant to the expanding liquid-vapor interface. Obviously, another process involving adsorption at the expanding solid-liquid interface (near the three-phase contact line), which goes more slowly than diffusion, has to be active. 相似文献