首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Synergic solvent extraction of Pr(III), Ho(III) and Er(III) was carried out at pH3.5 with a mixture of 2-thenoyltrifluoroacetone (HTTA) and tribenzylamine (TBA) from perchlorate media, having ionic strength 0.1M(H+, ClO 4 ). The stoichiometmric composition of all three synergic adducts was established to be Pr(TTA)3·3TBA, Ho(TTA)3·3TBA and Er(TTA)3·3TBA. The formation constants KTTA and Ksyn and stability constant ±syn were also computed and found to be in the order ErHo>Pr. The effect of various anions on the extraction has also been studied.  相似文献   

2.
The extraction of Sm(III), Dy(III) and Tm(III) with N-benzoyl-N-phenylhydroxalamine (BPHA) in benzene at pH range (1–10) has been studied. Quantitative separation was found in borate media at pH 8. The slope analysis showed that the extracted complex was M(BPHA)3, where M=Sm(III), Dy(III) and Tm(III). The effect of various masking agents indicated that EDTA, oxalate, fluoride, phosphate and citrate, interfered in this study. Decontamination study showed that Cu(II), Zn(II), Ni(II), Co(II), Cr(III), Sc(III) and Fe(III) had very poor separation factors, whereas Sn(II), Cd(II), In(III), Ru(II), Hg(II), Ag(I), Ta(V) and Hf(IV) had very large separation factor. The effect of different diluents showed that carbontetrachloride, chloroform, benzene, toluene, nitrobenzene dichloromethane, MIBK and cyclohexanone were equally good for extraction except TBP due to ion association.  相似文献   

3.
The equilibrium extraction behavior of Sm(III), Eu(III) and Dy(III) from aqueous NaClO4 solutions in the pH range of 4–9 at 0.1 M ionic strength into organic solutions of 1-nitroso-2-naphthol (HA) and 1,10-phenanthroline (Phen) has been studied. The equilibrium concentrations of Eu were assayed through the 344 keV photopeak of the152Eu radiotracer used. The concentrations of Sm and Dy were measured by irradiating one mL portions of the organic extract and analyzing the 104 and 108 keV photopeaks of the short-lived neutron activation products,155Sm and165mDy, respectively. Quantitative extraction of Eu with 5×10–2 M HA alone was obtained in the pH range of 6.7–7.8 with n-butanol, 7.4–8.5 with chloroform, 8.0–8.7 with ethyl acetate, 7.7–8.5 with isoamyl alcohol and 6.1–8.0 with methyl isobutyl ketone (MIBK). But, Eu was extracted only to a maximum of 78% and 83% in the pH range of 8.3–8.9 and 7.4–8.1 with carbon tetrachloride and xylene, respectively. The extraction of Sm and Dy were found quantitative in the pH range of 6.3–7.0 and 6.6–7.1, respectively, with 5×10–2 M HA alone in MIBK solutions. The synergistic extraction of Eu was quantitative in the pH range of 6.6–9.8 with chloroform, 7.8–8.9 with ethyl acetate, 7.7–8.5 with isoamyl alcohol and 6.0–9.6 with MIBK when 1×10–2 M each of HA and Phen were employed. Sm and Dy were quantitatively extracted into MIBK solutions containing 5×10–2 M each of HA and Phen in the pH range 6.0–7.5 and 6.1–7.5, respectively. The distribution ratios of these lanthanides (Ln) were determined as a function of pH, and HA and Phen concentrations. The analysis of the data suggests that these Ln are extracted as LnA3 chelates when HA alone is used. In the presence of HA and Phen, both LnA3(Phen) and LnA3(Phen)2 adducts are formed only in the MIBK system while LnA3(Phen) complexes are the predominant ones in all other solvent systems studied. The extraction constants and the adduct formation constants of these complexes have been calculated.  相似文献   

4.
2,4,5-Trimethoxybenzoates of Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III) are crystalline, hydrated salts with colours typical for M(III) ions. The carboxylate group is a bidenate, chelating ligand. The complexes of Tb(III), Dy(III) and Ho(III) are dihydrates while those of Er(III), Tm(III), Yb(III), Lu(III) and Y(III) are trihydrates. These compounds are characterized by low symmetry. On heating in air to 1273 K, the 2,4,5-trimethoxybenzoates of heavy lanthanides(III) and yttrium(III) decompose in two steps. At first they dehydrate to form anhydrous salts which next are decomposed to the oxides of the respective metals. The values of the enthalpy of dehydration process were determined. The solubility in water at 293 K for all heavy lanthanides(III) and yttrium(III) are in the orders of 10-3-10-4 mol dm-3. The magnetic moments of the complexes were determined in the temperature range 77-300 K.  相似文献   

5.
The extraction behavior of Sm(III), Eu(III) and Dy(III) with 1-nitroso-2-naphthol (HA) and trioctylphosphine oxide (TOPO) in methyl isobutyl ketone (MIBK) from aqueous NaClO4 solutions in the pH range 4–9 at 0.1M ionic strength has been studied. The equilibrium concentrations of Sm and Dy were measured using their short-lived neutron activation products,155Sm and165mDy, respectively. In the case of Eu, the concentrations were assayed through the152,154Eu radiotracer. The distribution ratios of these elements were determined as a function of pH, 1-nitroso-2-naphthol and TOPO concentrations. The extractions of Sm, Eu and Dy were found to be quantitative with MIBK solutions in the pH range 5.9–7.5, 5.6–7.5 and 5.8–7.5, respectively. Quantitative extraction of Eu was also obtained between pH 5.8 and 8.8 with chloroform solutions. The results show that these lanthanides (Ln) are extracted as LnA3 chelates with 1-nitroso-2-naphthol alone, and in the presence of TOPO as LnA3(TOPO) and LnA3(TOPO)2 adducts. The extraction constants and the adduct formation constants of these complexes have been calculated.  相似文献   

6.
The reactions of Ln(NO3)3?6H2O (Ln=Pr, Nd or Er) with the potentially tridentate O,N,O chelating ligand 2,6-pyridinedimethanol (H2pydm) in a 1:2 M ratio were investigated, and complexes with the formula [Ln(H2pydm)2(NO3)2](NO3) (Ln=Pr or Nd) (1 and 2) and [Er(H2pydm)3](NO3)3 (3) were isolated. The compounds contain 10-coordinate Pr(III) and Nd(III) ions that crystallize in the triclinic space group P-1 while the 9-coordinate Er(III) complex crystallizes in the monoclinic system (P21/n). A new lanthanide complex, [Pr(H2pydm)3](Cl)3?DMF (4), has been synthesized by reaction of PrCl3?6H2O and H2pydm. The nine-coordinate Pr(III) is bound to three H2pydm ligands. X-ray crystal structures of 1–4 reveal that the ligand coordinates tridentate via the pyridyl nitrogen and the two hydroxyl oxygens. The electronic absorption spectra of 1–4 show 4f–4f transitions.  相似文献   

7.
A simple, sensitive and selective method for solvent extraction and spectrophotometric determination of lanthanum(III), praseodymium(III), neodymium(III) and samarium(III) is described. The rare earth metals are extractable into chloroform solution of N-phenylbenzohydroxamic acid (PBHA) at pH9–10. Various parameters are studied to optimize the extraction conditions. Stoichiometry of the complexes and the effect of various ions is discussed. The molar absorptivity is found to increase from 65,000 to 93,000 1·mol–1· cm–1 with the increase in atomic number of the rare earths. The stability constants of the complexes, separation factors and pH5 0 are discussed.  相似文献   

8.
Summary 2,2,6,6-Tetramethylpiperidine nitroxide free radical (TMPNO) complexes with Y3+ and Ln3+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er or Yb) perchlorates were synthesized and characterized by means of i.r. and e.s.r. spectral, magnetic susceptibility and molar conductance studies. The new complexes are of the general type [M(TMPNO-)2(OH2)3(OCIO3)](ClO4)2 (M = Y or Ln), involving two TMPNO;, three aqua and one unidentate perchlorato ligand in the complex cation, and two anionic C104 groups. The NO bond-order in coordinated TMPNO is apparently two, as suggested by the i.r. evidence. The magnetic susceptibility and e.s.r. data were interpreted in terms of partial spin-spin coupling interaction between the unpaired electrons of the two TMPNO- ligands, as well as unpaired f electrons, in the case of paramagnetic lanthanide(Ill) ions. Severe steric hindrance, introduced during coordination of the free radical ligand through the NO oxygen atom, does not seem to allow accommodation of more than two TMPNO molecules in the inner coordination sphere of the central Y3+, or Ln3+ ion.To whom all correspondence should be directed.  相似文献   

9.
The complexation between the lanthanide metal ions Ce(III), Gd(III), Nd(III), Tb(III), and Er(III) and gliclazide produced 1 : 1 molar ratio metal: gliclazide (Glz) complexes coordinated in a monodentate fashion via the OH group and having the general formulas [M(Glz)Cl3(H2O)]·xH2O (M = Ce, Gd, Nd and x = 1, 3, 4, respectively) and [M(Glz)(H2O)4]Cl3·yH2O (M = Tb, Er and y = 1, 2, respectively). The structure of the synthesized lanthanide gliclazide complexes was assigned by IR, 1HNMR, and UV-Vis spectroscopy. Thermal analysis and kinetic and thermodynamic parameters gave evidence for the thermal stability of the Glz complexes. The latter showed a significant antimicrobial effect against some bacteria and fungi.  相似文献   

10.
Interfacial distribution of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y between aqueous solutions of their salts and solutions of functionalized ionic liquid, 1,11-bis(1-methylimidazol-3-yl)-3,6,9-trioxaundecane bis(hexafluorophosphate) has been studied. The stoichiometry of extracted complexes has been determined, the effect of HNO3 concentration in aqueous phase on the efficiency of rare earth elements(III) recovery into organic phase has been considered.  相似文献   

11.
An 1H, 13C, and 15N NMR study has been completed for the complexes of La(III), Tm(III), and Yb(III) with nitrate and isothiocyanate in aqueous solvent mixtures. Signals for four complexes are observed for both the Tm3+–NO3 and Yb3+–NO3 solutions, with the species identified as the mono-, di-, tetra-, and either the penta - or hexanitrato. These results are consistent with those determined for the nitrate complexes of the Ce(III)–Eu(III) metal ions. The chemical shifts for the Tm(III) and Yb(III) nitrate complexes indicate a pseudocontact binding mechanism prevails. The complexes of diamagnetic La(III) with NO3 produce three signals in the 15NO3 spectra, with assignments paralleling those observed with the paramagnetic lanthanides. Three complexes are formed in the La3+–NCS solutions, with signals assigned to the mono-, di-, and triisothiocyanato species.  相似文献   

12.
In the described analysis of mineral waters, after the throughflow of the sample through a column with Dowex 50 WX 12 in H+ form, the main cations are first eluted by 1.6 N HCl and then the rare earths by 6 N HCl. The latter are separated by ion-exchange chromatography on Dowex 50WX8 in NH4 + form, the elution being performed with ammonium citrate pH 4.19. The presence of rare earths in the eluate was ascertained spectrophotometrically by means of their reaction with xylenol orange in the presence of cetylpyridinium bromide. In mineral waters from the West-Bohemian spa region it was possible to find traces of trivalent La, Ce, Pr, Nd, Sm + Gd, Y, Dy, Ho, Er, Tm, Yb and Lu.  相似文献   

13.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

14.
Reactions of La(III), Pr(III), Nd(III) or Sm(III) nitrate with bifunctional tetradentateSchiff base, [o-HOC6H4C(CH3): :NCH2]2, having the donor system HO–N–N–OH in 12 molar ratio have been investigated and found to yield new derivatives of the type [Ln(SBH2)2](NO3)3 [whereLn=La(III), Pr(III), Nd(III) or Sm(III) andSBH2=Schiff base molecule, [o-HOC6H4C(CH3) : NCH2]2. On the basis of elemental analyses, conductivity and magnetic measurements and infrared spectra, plausible structures for the resulting complexes have been indicated.  相似文献   

15.
The complex formation of Eu(III) by bicarbonate/carbonate ions has been studied at 0.1 M ionic strength and 25°C using synergistic solvent extraction system of 1-nitroso-2-naphthol and 1,10-phenanthroline in chloroform. Concentrations of bicarbonate (5·10–3 to 1·10–1 M) and carbonate (5·10–4 to 1·10–2 M) ions in the aqueous phase have been varied in the pH range of 8.0 to 9.1 to simulate ground and natural water compositions. Under these conditions, the following species have been identified: Eu(HCO3)2+, Eu(HCO3)2 +, Eu(CO3)+ and Eu(CO3)2 . Their conditional formation constants (log ) have been calculated as 4.77, 6.74, 6.92 and 10.42, respectively. These values suggest that the carbonate complexes of Eu(III) are highly stable.  相似文献   

16.
A direct, low-temperature nuclear magnetic resonance spectroscopic study of europium(III)-nitrate contact ion-pairing has been completed, and preliminary results for europium(III)-isothiocyanate have been obtained. In water-acetone-Freon mixtures, at –110°C to –120°C, four15N NMR signals are observed for coordinated nitrate ion. Area evaluations of the signals and their concentration dependence indicate the formation of Eu(NO3)2+, Eu(NO3) 2 1+ , and two higher complexes, possibly the tetra-, with either the penta-or hexanitrato. This correlates well with similar15N NMR results obtained for Ce(III), Pr(III), Nd(III), and Sm(III). As a result of a higher dielectric constant, complex formation is significantly less in water-methanol mixtures, wheein only three complexes form with Eu(NO3) 2 1+ dominating at the highest anion concentrations. Competitive complexing experiments in water-methanol also were made by35Cl NMR chemical shift and linewidth measurements, as well as15N NMR. Initial experiments with the Eu3+-NCS system show four coordinated anion signals, displaced from the bulk anion peak by about –250 ppm and –2,500 ppm in the13C and15N NMR spectra, respectively. Area evaluations are consistent with the presence of Eu(NCS)2+ through Eu(NCS) 4 1- in these solutions. A consideration of the chemical shifts identified the nitrogen atom as the site of binding in the NCS. A discussion of these preliminary results, as well as those for several other metal-ions, will be presented.  相似文献   

17.
The recovery and separation of plutonium(IV) and americium(III) by solid-phase extraction (SPE) on alkylated silica gel S16 modified with N-benzoylphenylhydroxylamine (BPHA) and with its derivatives was studied. BPHA was modified by introducing into the p-position of the phenyl ring of electronactive substituents that differ in their hydrophobicity: CH3, Ph, Cl, F, and NO2. The SPE of plutonium(IV) and americium(III) was studied in the range of acidities from pH 8 to 1 M HNO3. The recovery and separation of these elements was shown to depend on the nature of the substituent, aqueous acidity, and the preparation of S16 to SPE experiments.  相似文献   

18.
Complexation in the Fe2+–Fe3+N-(carboxymethyl)aspartic acid (H3L) system in aqueous solutions was studied by pH- and redox-potentiometric titration at 25°C and at an ionic strength of 0.1 (KCl). Depending on the H3L concentration and pH, neutral, protonated, and hydroxo complexes of iron(III) can be formed in the solutions. The stability constants for all the detected complexes were calculated, and the distribution plots for the fractions of complexes vs. the solution pH were constructed.  相似文献   

19.
Summary In the solid state l-cis-[M(en)2Cl2]Cl [M=cobalt(III) or chromium(III)] undergoes thermal racemisation smoothly at 158 °C without anycis-trans interconversion. The values of krac, H and S are 6 × 10–6s–1, 218 kJM–1 and 156.1 JK–1M–1 for the cobalt(III) complex and 3.5 × 10–5s–1, 229.7 kJM–1 and 197.9 JK–1M–1 for the chromium(III) complex, respectively. The results are only in accord with a rhombic twist mechanism of the type originally proposed by Ray and Dutt for [M(AA)3] complexes.  相似文献   

20.
The metal ligand stability constants of violuric acid [H2VA], N-methyl violuric acid [H2MVA], N-phenyl violuric acid [H2PVA] and N-(o-m-p) tolyl violuric acids [N-H2(o-m-p)TVA] with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Dy(III), and Ho(III) have been determined potentiometrically in 50 Vol% ethanol water media at 25°C and at an ionic strength of 0.1 M NaClO4. The stability of the complexes follow the order of basicities of ligands and also the electron affinities of rare earths as measured by their overall ionisation potential. The order of stabilities of rare earths with violuric acids is, La3+ < Ce3+ < Pr3+ < Nd3+ < Sm3+ < Gd3+ < Eu3+ < Dy3+ < Ho3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号