首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lamb-dip technique has been applied to the observation of the J = 1 ← 0 transition of DF: for the first time, the hyperfine structure due to D and F have been resolved by using microwave spectroscopy. The high accuracy of this technique allows us to provide hyperfine parameters that are in very good agreement with those obtained from molecular beam experiment. In addition, our frequencies together with the unresolved ones up to J″ value of 47 allow us to provide the most accurate ground state rotational constants of DF known at the moment. Furthermore, due to the presence of a relevant number of strong crossing resonances, the J = 1 ← 0 transition of DF can be considered an illustrative case to show how they modify the shape of Lamb-dip spectra.  相似文献   

2.
The rotational spectrum of DF in the 1.3-3.3 THz frequency region has been observed by means of a tunable far-infrared spectrometer. The J + 1 ← J, with J = 1-4, rotational transitions of DF have been recorded with an accuracy of the order of 50-200 kHz. These measurements, in conjunction with the hyperfine components of the J = 1 ← 0 transition recently observed [Cazzoli and Puzzarini, J. Mol. Spectrosc. 231 (2005) 124-130] and the rotational transitions up to J = 47 [R.S. Ram, Z. Morbi, B. Guo, K.-Q. Zhang, P.F. Bernath, J. Vander Auwera, J.W.C. Johns, S.P. Davies, Astrophys. J. Suppl. Series 103 (1996) 247-254] consented to improve the ground state rotational parameters of DF.  相似文献   

3.
The Doppler-limited rotational spectrum of the NH radical in its electronic (X) and vibrational ground state has been measured using the frequency stabilized Cologne side-band spectrometer in the frequency region near 2 THz. The nitrogen 14N nuclear hyperfine patterns have been observed accompanying the resolved fine (JJ″) structure of the N=2←1 rotational transition. The observed peak frequencies were analyzed in detail together with the previously measured hyperfine frequencies of the N=1←0 rotational transition and with combination differences obtained from the high-resolution electronic spectra to derive precise rotational, centrifugal distortion, fine, and hyperfine parameters. In the numerical analysis the essential attention has been paid to partly resolved and unresolved hyperfine structures. The peak positions of the partly or fully overlapped lines were analyzed with the help of a profile simulation with estimated half-widths and calculated relative intensities and in this manner the least square fit of the unresolved and partly resolved lines was significantly improved. The NH radical is an extremely important species in nitrogen chemical reaction networks in the interstellar medium and atmospheric chemistry.  相似文献   

4.
The rotational spectra of the deuterium cyanide isotopic species DCN, D13CN, DC15N, and D13C15N were recorded in the vibrational ground and first excited bending state (v2=1) up to 2 THz. The R-branch transitions from J=3←2 to J=13←12 were measured with sub-Doppler resolution. These very high resolution (∼70 kHz) and precise (±3-10 kHz) saturation dip measurements allowed for resolving the underlying hyperfine structure due to the 14N nucleus in DCN and D13CN for transitions as high as J=10←9. Additional high JR-branch (J=25←24 to J=28←27) transitions around 2 THz and direct l-type (ΔJ=0, J=19 to J=25) transitions from 66 to 118 GHz were recorded in Doppler-limited resolution. For the ground state of D13C15N, the J=1←0 transition was measured for the first time. The transition frequency accuracies for the other deuterated species were significantly improved. These new experimental data, together with the available infrared rovibrational data and previously measured direct l-type transitions, were subjected to a global least squares analysis for each isotopomer. This yielded precise sets of molecular constants for the ground and first excited vibrational states, including the nuclear quadrupole and magnetic spin-rotation coupling constants of the 14N nucleus for DCN and D13CN. The hyperfine structure due to the D, 13C, and 15N nuclei have not been resolved, but led to a broadening of the observed saturation dips.  相似文献   

5.
The complex hyperfine structures in the J = 1 ← 0, and J = 2 ← 1 ground state rotational transitions of 35Cl3CH and 35Cl237ClCH were resolved and measured at conditions of supersonic expansion. Accurate spectroscopic constants for the two isotopomers have been derived from global fits of the hyperfine structure together with hyperfine-free high-J millimetre wave data. The complete inertial and principal quadrupole tensors of the chlorine nuclei have been determined, and the symmetric top treatment for 35Cl3CH and the asymmetric top treatment for 35Cl237ClCH yield identical results for the principal tensor components of the 35Cl nucleus. The availability of precise experimental splitting constants for many molecules allows benchmarking of ab initio field gradient calculations, and it is found that for the chlorine nucleus optimum predictive performance for molecules of moderate size is obtained at the B3LYP/aug-cc-pVDZ level by using a scaling factor of 1.0619(23).  相似文献   

6.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

7.
The rotational spectrum of methylcyanide (acetonitrile) in the ground vibrational state was measured in the spectral region from 91 to 810 GHz using the Cologne and Tsukuba spectrometers operated in the Doppler-limited and sub-Doppler saturation layouts. The resolution of the saturation Lamb-dip measurements is estimated to be about 1 kHz at the best of circumstances and the measuring accuracy of 10-60 kHz depending very sensitively on the quality of the spectrum. In the cases of rotational transitions with the low quantum number J (J<18) and with a low difference of the rotational quantum numbers JK, the resolved or partly resolved hyperfine structures of the rotational transitions were observed. Together with the most accurate data from the literature, the newly measured experimental data were analyzed using the traditional polynomial energy formula as well as the Padè approximant for the effective rotational Hamiltonian. The resulting rotational, centrifugal distortion, and hyperfine structure spectroscopic constants were obtained with a significantly higher accuracy than the ones listed in the literature. In addition, an anomalous accidental resonance was detected between the K=14 ground state levels and the K=12, +l levels in the excited v8=1 vibrational state.  相似文献   

8.
The electric dipole moment of bromofluoromethane, CH279BrF, has been determined with a good accuracy by observing the second order ΔMJ = 0 Stark spectrum of the J = 32,1 ← 31,2, J = 52,3 ← 51,4 and J = 52,4 ← 51,5 rotational transitions. In addition, the equilibrium geometry and dipole moment have been evaluated using highly accurate ab initio calculations. By comparing the experimental [μa = 0.3466(11) D and μb = 1.704(26) D] and theoretical [μa = −0.339 D and μb = −1.701 D] dipole moment components, a very good agreement has been found.  相似文献   

9.
The pure rotational J=1←0 transitions of H35Cl and H37Cl have been observed in the millimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to 35Cl or 37Cl and H. The present observations allow to provide not only very accurate hyperfine constants but also, joint together with previous data, the most accurate ground state rotational parameters known up to now. The experimental determination of the hyperfine parameters has also been supported by ab initio computations.  相似文献   

10.
The far infrared and infrared spectra of formamide (HCONH2) have been recorded at high resolution (0.00125 cm−1) in the region of 90-1060 cm−1. Over 20,000 transitions from the out-of-plane NH2 wagging motion (n12 = 1 ← 0 fundamental, n12 = 2 ← 0 overtone, n12 = 2 ← 1 difference bands), torsion (n11 = 1 ← 0 bands), and out-of-phase NCO/NH2 bend (n9 = 1 ← 0 bands) have been assigned. Molecular parameters have been obtained for the ground state and the unperturbed n12 = 1 state. The least-squares fit calculations were completed with the microwave data available in the literature. The complicated resonance system between the n12 = 2, n11 = 1, and n9 = 1 states has been investigated carefully. Thus, we have been able to verify almost all resonances (avoided crossing) existing in the region J, K investigated. In the coupled Hamiltonian used for the fit, all Watson’s reduced parameters, including the octic ones and 16 Coriolis coupling parameters were taken into account. The rms deviation obtained from the fit was 0.000247 cm−1.  相似文献   

11.
Depopulation rates of rotational levels in the v3 = 2 vibrational state of 12CH4 are investigated by a pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2ν3 lines. The time evolution in population of the excited level after the pumping pulse is monitored by tuning the probe laser to a (3ν3 ← 2ν3) line corresponding to a transition with the excited rotational level as the lower level. Measurements were performed from room temperature down to 100 K in pure CH4 and in CH4-N2 mixtures. The rotational relaxation rate coefficients are given for the J = 1, A2, J = 1, E, J = 1, F2 and J = 0, F2 levels. The results are compared with the available data on line broadening coefficients. The temperature dependence of the data on N2-broadening is particularly well reproduced by the power law deduced from the results on rotational relaxation.  相似文献   

12.
We report on the self and pressure broadening of the J=9←8 transition of O12CS and O13CS and the J+1←J, with J=0, 1, 2, 3, rotational transitions of 12CO and 13CO. In particular, the J=9← 8 of OCS and J=1← 0 of CO have been investigated for a detailed comparison of lineshape models in the analysis of natural and modulated line profiles. Since the frequency modulation technique improves the instrumental sensitivity, allowing the study of weak transition line profiles, a thorough test of this technique applied to lineshape analysis has been carried out. Finally, the self and pressure broadening coefficients are also given. Due to the important role covered by CO in the atmospheric chemistry field, we have paid particular attention to the N2 and O2 broadening.  相似文献   

13.
The ground state (ν = 0) rotational spectrum of 2-fluorobenzonitrile has been reinvestigated in the frequency range 40.0-99.0 GHz. The millimeter-wave spectrometer used is a source-modulated system combined with a free space glass cell. Millimeter-wave radiation has been produced using a Gunn diode and frequency doubler combination. High J and K−1 (J ? 49 and K−1 ? 18) transitions have been measured and accurate rotational and centrifugal distortion constants have been determined. Finally, the experimental values were compared with the corresponding values calculated at the HF/DFT-B3PW91/6-31g(d,p) level of theory. A very good agreement has been found.  相似文献   

14.
Collisional relaxation has been considered for millimeter lines of carbon monoxide at room temperature. Accurate measurements of carbon dioxide- and rare gases-broadened widths have been performed on the J = 3 ← 2 rotational line of 12CO by using a video-type spectrometer. Measurements of nitrogen-, oxygen-, and xenon-broadened widths of the J = 5 ← 4 rotational line of 13CO were also carried by using a frequency-modulated spectrometer. A lineshape study performed on all the investigated binary systems provide confirmation that Voigt profile is not a suitable model to analyse experimental lines in the millimeter-waves region. On one hand, using this profile in the low pressure range, i.e. in the Doppler regime, the retrieved collisional linewidths do not follow a linear variation with the perturbing gas pressure. On the other hand, regardless of the pressure, lineshapes exhibit a narrowed profile. An accurate analysis of the pressure dependence of relaxation rates show that the Galatry profile is not appropriate and that experimental lineshapes are actually Speed Dependent Voigt profiles. Accurate broadening parameters were retrieved from this profile and compared to previous reported values and predictions calculated from the Robert-Bonamy formalism. Finally a variation of the ratio of relaxation speed dependence to broadening parameters versus relative masses of the collision partners is presented.  相似文献   

15.
Unstable, short-lived BiH3 has been synthesized and investigated by rotational spectroscopy in the range 158 (J=1-0) to 1280 GHz (J=8-7). Quadrupole and spin-rotation hyperfine structures (eQq=584.676(96) MHz), and the A1A2 splitting of the K=3 ground state level, have been resolved. By merging the pure rotational data with 1764 ground state combination differences obtained from the analysis of high resolution Fourier transform infrared spectra of the ν1-ν4 bands [J. Mol. Spectrosc. (2004) (in press)] spanning J and K values up to 16 and 14, respectively, with 0?ΔK?9, the ground state rotational and centrifugal distortion constants up to octic and sextic terms for reductions A and B, respectively, have been determined. Of the reductions of the ground state rovibrational Hamiltonian, reduction B including ε rather than h3 as off-diagonal element is clearly favored. An experimental r0 structure of the very-near spherical oblate symmetric top BiH3, r(BiH)=178.82 pm and α(HBiH)=90.320°, has been deduced from the rotational constants B0=2.64160172(18) and C0=2.6010403(31) cm−1. The derived experimental re structure, re(BiH)=177.834(50) pm and αe(HBiH)=90.321(10)°, was determined. This is in excellent agreement with the most recent ab initio structure, re(BiH)=177.84 pm, and αe(HBiH)=90.12°.  相似文献   

16.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

17.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

18.
Two aluminum mirrors with radii of 203.2 mm and radii of curvature also of 203.2 mm have been used to construct a tunable Fabry-Perót type resonator with Q values of ∼200 at frequencies as low as 500 MHz. The resonator has been incorporated into a pulsed nozzle, Fourier transform, Balle-Flygare spectrometer typically used for recording pure rotational spectra in the microwave region. The resonator design allows the instrument to access the radio frequency region (?3 GHz) of the electromagnetic spectrum. The spectrometer is of use in (i) recording low J transitions of large asymmetric molecules where the spectra are often greatly simplified compared to higher frequency regions; (ii) measuring hyperfine constants for heavy molecules with higher accuracy than may be obtained at higher frequencies where hyperfine structure may not be resolvable; and (iii) provides further synchronicity between laboratory based measurements and radio astronomy in the 30 cm region. The resonators use is illustrated by recording the rotational spectra of bromobenzene and iodobenzene. The lowest ΔJ = +1 transition for iodobenzene has been observed at 1130.5292(10) MHz.  相似文献   

19.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

20.
It is well established that water plays a fundamental role in various atmospheric phenomena and that the accuracy of its collisional broadening parameters has a crucial influence on reduction of remote sensing data. Nevertheless, in this field the experimental data are still scarce and consequently the estimates reported in spectroscopic databases are not always reliable and/or accurate. In the view of filling this gap, the self-, N2- and O2-broadening parameters of the J=11,1←00,0 rotational transition of water (1.113 THz) have been determined at room temperature. The experimental investigation has also been supported by theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号