首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Three spectral lines of the main water molecule isotope in the ground vibrational state located near 321, 325 and 380 GHz were studied at low pressures and room temperature using spectrometer with radio-acoustic detection of absorption. Self-, N2- and O2-pressure broadening and shifting parameters of these lines have been precisely measured. A number of parameters, in particular pressure shifts, were obtained for the first time. Complementary study of the 325-GHz line by resonator spectrometer at atmospheric pressure validated the low pressure experiment data and allowed measurement of the 325-GHz line intensity. Obtained results are discussed in comparison with previous experimental and theoretical data.  相似文献   

2.
We report on linewidth measurements on the J=24K,11−23K,10 and J=38K,33−37K,32 millimeter wave transitions in the ground vibrational state of nitric acid, located near 470.23 and 544.36 GHz, respectively. Experiments were performed with N2 and O2 as perturber molecules, in the 240-350 K temperature range by using a video-type spectrometer. The foreign-gas broadening parameters and their temperature dependence coefficients were determined using the Voigt profile, no narrowing effect being observed. In order to check the reliability of reported values, we carried out measurements on the J=14K,12−13K,11 transition located near 206.6 GHz, previously observed in two other laboratories. For this last line all the reported values are consistent themselves within one claimed standard deviation.  相似文献   

3.
The 313-220 rotational transition of water vapor at 183 GHz was studied using modern resonator spectroscopy methods at atmospheric pressures in the broad frequency range 130-205 GHz down to far wings. The experimental method of sample substitution for the exclusion of the apparatus function was used. The air broadening parameter value was defined as 3.84±0.04 MHz/Torr at 298 K. The observed atmosphere water vapor line center was found to be shifted down at about 53 MHz from the line center at low pressures, which gives a value of −0.07±0.02 MHz/Torr for the air pressure shift parameter. Measurements of broadening and shifting of the water line in pure nitrogen and oxygen atmosphere were also performed. Calculated then parameters of air broadening and shifting agree with directly measured ones within the errors quoted. Measurement of the integral intensity of the line was done. The directly measured integral line intensity coincides with a value given in GEISA and HITRAN databases within experimental error. The results are compared with previous experimental laboratory and satellite data.  相似文献   

4.
The conducting protonated polyaniline (ES)/γ-Fe2O3 nanocomposite with the different γ-Fe2O3 content were synthesized by in-situ polymerization. Its morphology, microstructure, DC conductivity and magnetic properties of samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), four-wire-technique, and vibrating sample magnetometer (VSM), respectively. The microwave absorbing properties of the nanocomposite powders dispersing in wax coating with the coating thickness of 2 mm were investigated using a vector network analyzers in the frequency range of 7–18 GHz. The pure ES has shown the absorption band with a maximum absorption at approximately 16 GHz and a width (defined as frequency difference between points where the absorption is more than 8 dB) of 3.24 GHz, when 10% γ-Fe2O3 by weight is incorporated , the width is broadened to 4.13 GHz and some other absorption bands appear in the range of 7–13 GHz. The parameter dielectric loss tan δe (=ε″/ε′) in the 7–18 GHz is found to decrease with increasing γ-Fe2O3 contents with 10%, 20%, 30%, respectively, but magnetic loss tan δm (=μ″/μ′) increases with increasing γ-Fe2O3 contents. The results show that moderate content of γ-Fe2O3 nanoparticles embedded in protonated polyaniline matrix may create advanced microwave absorption properties due to simultaneous adjusting of dielectric loss and magnetic loss.  相似文献   

5.
The absorption profile of the N = 1− fine structure line of oxygen was recorded by a resonator spectrometer at a frequency range of 110-130 GHz at atmospheric pressure and different temperatures ranging from −21 °C up to +22 °C. Analysis of the observed line shape allowed determination of the temperature dependence of the line pressure broadening. The measured value of the temperature exponent is n = 0.74(5) for self-broadening. Consistency of the measurements is supported by simultaneous measurements of the line intensity, the line mixing parameter and the line center frequency, and by comparison of obtained values with previously known data.  相似文献   

6.
Line intensities, self- and air-broadened linewidths, pressure-induced shifts, and collisional narrowing coefficients were measured from 2 ? J′ ? 32 in the P branch of the O2A-band (12 975-13110 cm−1) utilizing Galatry line profiles. Spectra were recorded using the frequency-stabilized cavity ring-down spectrometer located at NIST, Gaithersburg, MD with a spectral resolution <0.0001 cm−1 and noise-equivalent absorption coefficient of 6 × 10−8 m−1 Hz−1/2. Line intensities, obtained from calibrated gas samples for 2 ? J′ ? 32, are ∼1% lower than the values in current spectroscopic databases. At higher J (18 ? J′ ? 32), the measured air- and self- broadened half widths are up to 20% lower than the extrapolated values given in HITRAN 2004, while corresponding half-widths for 2 ? J′ ? 15 are in better agreement. Available self-broadened half widths are fitted to empirical expressions with an rms of 0.8%. We discuss the implications of our results for accurate remote sensing of surface pressure and photon path length distributions.  相似文献   

7.
Since water is a fundamental component of the atmosphere and it is well established that the accuracy of collisional broadening parameters has a crucial influence on reduction of remote sensing data, we decided to investigate the self-, N2- and O2-broadening parameters of the J=61,6←52,3 (22.2 GHz) rotational transition of water in the temperature range 296-338 K. Due to the relevance of this water line, this investigation should be considered of particular interest in monitoring the Earth's atmosphere, and therefore a particular effort has been made in order to reduce instrumental as well as systematic errors. Experimental determinations have also been supported by theoretical calculations.  相似文献   

8.
This paper is devoted to the measurement of pressure shift and broadening parameters of water-vapor lines of the pure rotational transition 110-101 in the ground vibrational state of H216O at 556.936 GHz, H217O at 552.02 GHz, H218O at 547.676 GHz, and the vibrationally excited state v2=1 line of H216O at 658.003 GHz. The broadening coefficients of the line at 556.936 GHz (for N2 and O2 as perturbing gases) coincide within the errors with the values obtained recently by Seta et al. [Pressure broadening coefficients of the water vapor lines at 556.936 and 752.033 GHz. JQSRT 2008;109:144-50] by means of a very different technique (THz-TDS). Pressure shift and broadening for other lines were measured for the first time. Comparison of our results with previous measurements and theoretical calculations is presented.  相似文献   

9.
The 60-GHz band of 16O2 was studied at room temperature and at low (up to 4 Torr) and atmospheric pressures. Precision measurement of central frequencies, self-broadening, and N2-broadening parameters of fine-structure transitions up to N = 27 was performed by use of a spectrometer with radio-acoustic detection (RAD). The measured parameters are compared with GEISA/HITRAN databanks, MPM92, and other known data. An improved set of the oxygen fine-structure spectroscopic constants is obtained. The absorption profile was recorded in the range 45-96 GHz for laboratory air and pure oxygen at atmospheric pressure by use of a resonator spectrometer with noise level of about ± 0.05 dB/km, and used for deducing the first-order line mixing coefficients and for quantitative assessment of second-order mixing effects. A refined set of MPM parameters is derived from the new data and presented here.  相似文献   

10.
The microwave spectrum of furfural was investigated in the frequency range 7 GHz-21 GHz and 49 GHz-330 GHz. The ground and first torsional state of trans-furfural and ground state of cis-furfural were assigned and analyzed. A total of 1720 rotational lines with J up to 100 and Ka up to 53 were assigned to the ground state of trans-furfural, 1406 rotational lines with J up to 100 and Ka up to 48 were assigned to the first torsional state of trans-furfural and 2103 rotational lines with J up to 90 and Ka up to 48 to the ground state of cis-furfural. Accurate sets of centrifugal distortion constants for both conformations have been determined for the first time. The spectra of all 13C and 18O singly substituted isotopic species were observed in natural abundance in the 7 GHz-21 GHz range. Molecular structure co-ordinates, bond lengths and angles of the Kraitchman substitution type (rs) and pseudo-Kraitchman type (rpKr) are derived from the isotopic studies.  相似文献   

11.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

12.
Geometry optimization calculations on 13 members of the C3H6O3 family of organic species have been carried out to determine their relative binding energies. Dimethyl carbonate [(CH3)2CO3] is one of the lower energy species in this family, which includes the C3-sugars 1,3-dihydroxyacetone and glyceraldehyde. The microwave spectrum of dimethyl carbonate has been measured over the frequency range 8.4-25.3 GHz with several pulsed-beam Fourier-transform microwave spectrometers and from 227 GHz to 350 GHz with direct absorption spectrometers. The spectrum of the lowest-energy cis-cis conformer of dimethyl carbonate has been assigned, and ab initio electronic structure calculations of the three possible conformers have been performed. Stark effect measurements were carried out on the cis-cis conformer to provide accurate determinations of the dipole moment components.  相似文献   

13.
The complex permittivity (ε′–″), complex permeability (μ′–″) and microwave absorption properties of ferrite–polymer composites prepared with different ferrite ratios of 50%, 60%, 70% and 80% in polyurethane (PU) matrix have been investigated in X-band (8.2–12.4 GHz) frequency range. The M-type hexaferrite composition BaCo+20.9Fe+20.05Si+40.95Fe+310.1O19 was prepared by solid-state reaction technique, whereas commercial PU was used to prepare the composites. At higher GHz frequencies, ferrite's permeabilities are drastically reduced, however, the forced conversion of Fe+3 to Fe+2 ions that involves electron hopping, could have increased the dielectric losses in the chosen composition. We have measured complex permittivity and permeability using a vector network analyzer (HP/Agilent model PNA E8364B) and software module 85071. All the parameters ε′, ε″, μ′ and μ″ are found to increase with increased ferrite contents. Measured values of these parameters were used to determine the reflection loss at various sample thicknesses, based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 80% ferrite content has shown a minimum reflection loss of −24.5 dB (>99% power absorption) at 12 GHz with the −20 dB bandwidth over the extended frequency range of 11–13 GHz for an absorber thickness of 1.6 mm. The prepared composites can fruitfully be utilized for suppression of electromagnetic interference (EMI) and reduction of radar signatures (stealth technology).  相似文献   

14.
Enhancement spectra of the collision-induced absorption in the first overtone region 5500-6750 cm−1 of D2 in the D2-Ar, D2-Kr, and D2-Xe binary mixtures were studied at 298 K for base densities of D2 in the range 55-251 amagat and for partial densities of Ar, Kr, and Xe in the range 46-384 amagat. The observed spectra consist of the following quadrupolar transitions: O2(3), O2(2), Q2 (J), J = 1-5 and S2 (J), J = 0-5 of D2. Binary and ternary absorption coefficients were determined from the integrated absorption coefficients of the band. Profile analyses of the spectra were carried out using the Birnbaum-Cohen (BC) lineshape function and characteristic lineshape parameters were determined from the analyses.  相似文献   

15.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

16.
Rotational spectrum of jet-cooled 9-cyanoanthracene has been observed in the 4-8 GHz region with a Fourier-transform microwave spectrometer. The present observation of 25 low-J transitions with J′′?11 has confirmed the previous results on the rotational constants of the ground state determined by rotational coherence spectroscopy [J. Phys. Chem. A. 105 (2001) 1131] and provided the values with significantly improved precision. An accurate set of hyperfine splitting constants is also reported for the 14N nuclear quadrupole coupling. The electric dipole moment was determined from Stark effect measurements on several split components: μb(=μ)=4.406(7) D.  相似文献   

17.
The ground vibrational state rotational spectrum of 2,3-difluorobenzonitrile has been reinvestigated in the frequency range 40.0-99.0 GHz. High J and K−1 (J ? 62 and K−1 ? 20) transitions have been measured and analyzed to determine accurate rotational and centrifugal distortion constants. Finally, the experimental values were compared with the corresponding values computed at the DFT-B3PW91/6-31g(d,p) level of theory. A very good agreement has been found.  相似文献   

18.
Magnetic and electromagnetic properties were investigated on the composites of iron oxide and Co-B alloy, which were prepared by a modified chemical reduction method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). The complex electromagnetic parameters (permittivity εr=εr′+jεr″ and permeability μr=μr′+jμr″) of paraffin mixed composite samples (paraffin:composites=1:1 in mass ratio) were measured in the frequency range 2-18 GHz by vector network analyzer. The measured real part (εr′) and imaginary part (εr″) of the relative permittivity show two resonant peaks in the range of 2-18 GHz. The imaginary parts of relative permeability (μr″) of all samples exhibited one broad resonant peak over the 2-8 GHz range. The μr″ of samples with higher molar ratio of Co to Fe (C and D) shows negative values within 13-18 GHz, which exhibit resonant and antiresonant permeabilities simultaneously. Calculation results indicated that the reflection loss values of the composites and paraffin wax mixtures are less than −10 dB with frequency width of about 6 GHz at the matching thickness.  相似文献   

19.
NiFe2O4 nanoparticles were synthesized by the polyacrylamide gel method with acrylamide as the monomer and N,N′-methylenediacrylamide as lattice agent. The average crystallite sizes of the nickel ferrites annealed at 500, 600 and 800 °C are about 10, 30 and 50 nm, respectively. Ferrite-polystyrene composites were made by hot pressing, and microwave-absorbing properties of the composites with different contents of 35, 45, 55 and 65 wt% ferrite were investigated by testing complex permeability and complex permittivity in the X-band (8.2-12.4 GHz) frequency range. All the parameters, ε′, ε″, μ′ and μ″, increase with increasing ferrite content. The reflection losses were calculated based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 65 wt% ferrite content shows a minimum reflection loss of −13 dB at 11.5 GHz with a −10 dB bandwidth over the extended frequency range of 10.3-13 GHz for an absorber thickness of 2 mm.  相似文献   

20.
The oxygen fine structure line 1− at 118.75 GHz was studied by two spectrometers at low (0.2-3.5 Torr) and high (atmosphere) pressures in air and pure oxygen. Improvement in the spectrometer with BWO and acoustic detector included use of a powerful (more than 40 mW) radiation source. Improvement in the modern resonator spectrometer included exclusion of apparatus function by sample substitution and a wider (110-130 GHz) scanned frequency range. As a result, the 1− oxygen line was observed by both spectrometers with high (up to 450) signal-to-noise ratio which permitted precise measurements of the line parameters. The investigation separated linear- and quadratic-with-pressure displacement of the line center. The line mixing coefficient responsible for apparent quadratic dependence of the center frequency on pressure was measured experimentally for the first time for this line. The line mixing coefficient was measured at 297 K as −4.62(38)×10−5 Torr−1 for pure oxygen and −5.9(29)×10−5 Torr−1 for air, compared to the previously calculated value −3.1×10−5 Torr−1. Linear dependence of the line center frequency on pressure does not exceed ±20 kHz/Torr for air and ±10 kHz/Torr for pure oxygen. Refined values of line broadening were obtained. Integral intensity of the line was measured. A comparison with the previous investigations is presented. Inconsistencies in published data about pressure line shifts of oxygen molecule spectral lines are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号