首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
本文用钛系高效催化剂合成了四种乙烯-丙烯共聚物,测定了共聚物的单体组成、序列结构分布、分子量和结晶度.在考察了引发剂和氯磺化试剂对氯磺化反应影响的基础上,制备了不同磺化度的氯磺化乙丙共聚物,并用~(13)C-NMR分析其化学结构,表明共聚物分子链上CH没有发生反应,CH_3只被-SO_2Cl取代,而CH_2可被-SO_2Cl或-Cl取代.  相似文献   

2.
应用扫描电子显微镜(SEM)研究乙烯-丙烯嵌段共聚物和聚乙烯/聚丙烯共混物的冲击断裂表面形态。结果表明,这二种材料力学性能的差别,明显地反映在它们的断面形态上。前者显示出一种典型的韧性断裂特征;后者则呈现出一种剥离层状结构。~(13)C-NMR分析结果表明,在上述乙烯-丙烯嵌段共聚物中,确实存在着乙烯-丙烯共聚链段。这是该材料具有良好的抗冲击性能的主要原因。  相似文献   

3.
对顺-1,4含量为100%的高顺式聚异戊二烯(HCPI)进行加氢反应,得到了序列结构高度规整的乙烯-丙烯交替共聚物(alt-EP).所用的HCPI有适当的分子量(Mn=41×104)和极窄的分子量分布(Mw/Mn=1.02).HCPI的加氢反应以环烷酸镍和三异丁基铝为催化剂,在60℃和4.0MPa氢压的条件下反应3h,加氢产物的加氢度为100%.GPC测试结果显示所得乙烯-丙烯交替共聚物保持了窄分布的特点,表明HCPI加氢后未发生交联和降解反应;NMR,FTIR和广角X射线衍射测试结果表明此乙烯-丙烯交替共聚物具有高度规整的序列结构,为完全交替结构的乙烯-丙烯共聚物.并通过TGA和DSC对乙烯-丙烯交替共聚物的热性能进行了表征.  相似文献   

4.
乙烯—丙烯嵌段共聚物的鉴别   总被引:1,自引:0,他引:1  
  相似文献   

5.
微孔型固体偏氟乙烯-六氟丙烯共聚物电解质   总被引:4,自引:0,他引:4  
将固体聚合物电解质 (Solidpolymerelectrolyte)用于锂离子电池的研究已经有 3 0年的历史[1] ,从物理角度来看 ,研究过干态型 (DrySPE)、凝胶型 (GelledSPE)和微孔型固体聚合物电解质 (PorousSPE)三大类型[2 ] ;从化学角度来看 ,研究过含氧、含氮、和含氟的等聚合物[1~ 6 ] .微孔型固体含氟聚合物电解质是近 1 0年来才开始研究并受到产业界很大关注的一种SPE .固体聚合物电解质的应用可以解决液体电解质锂离子电池的漏液问题 ,并提高其安全性 ,还可以通过使用塑料包装来减小电池的重量…  相似文献   

6.
采用熔融纺丝技术制备偏氟乙烯-六氟丙烯共聚物[P(VDF-HFP)]初生纤维,在90°C下分别拉伸2、4、6倍,用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、热重分析(TG)、示差扫描量热分析(DSC)、拉伸试验等研究了纤维结晶、热性能、力学性能、弹性回复性能等.结果表明:P(VDF-HFP)纤维晶区主要源于偏氟乙烯(VDF)链段,具有α和β2种晶型;随着拉伸倍数的增大,α晶型转变为β晶型并逐步增加,纤维结晶度提高;拉伸倍数为6倍时,P(VDF-HFP)纤维在氮气氛围下的热分解温度为452.3°C,熔融温度为126.9°C,断裂强度为502.6 MPa,定伸长为20%时,重复拉伸50次的弹性回复率为81%.  相似文献   

7.
采用摩尔含量接近的两个单体乙烯和1-丁烯分别无规共聚聚丙烯样品,用三氯苯进行室温可溶物和不溶物的分离,采用凝胶渗透色谱、13C核磁共振波谱及热分析等方法对两种共聚聚合物及其分离物进行表征,探讨了乙烯和1-丁烯作为共聚单体对聚丙烯树脂结构和性能的影响.结果表明,与乙烯相比,1-丁烯更趋向于共聚在较长的聚丙烯分子链上,其结果导致丙烯/1-丁烯无规共聚聚丙烯的可溶物含量更低.同时,对两种无规共聚物结晶性能的差异以及对光学性能和动态力学性能的影响研究表明,如果共聚单体含量接近,丙烯/1-丁烯无规共聚物结晶度更高;透明制品雾度相同时,丙烯/1-丁烯无规共聚物的刚性更高.  相似文献   

8.
甲基丙烯酸甲酯的整体聚合物是一种透明的玻璃体,普通称为有机玻璃,在国防工业上有其重要用途,但其表面硬度较差,容易磨损,冲击强度也不够好,为了克服这些缺点,我们曾作了一些它的共聚物的研究。 的报告曾经指出:甲基丙烯酸甲酯和少量甲基丙烯酸丙烯酯进行整体共聚合,可以改进其表面硬度。作者也曾研究过甲基丙烯酸甲酯与乙酸乙烯酯整体共聚物,可以增  相似文献   

9.
<正> 前言红外光谱在多组份高聚物系统(共混或共聚)的组分定量分析中,有其优越性,因而得到广泛的应用。本文以无规聚丙烯为参比物,测定甲基在1380cm~(-1)的吸收系数。以此吸收系数测定乙丙共聚物中甲基的浓度,从而计算出丙烯在乙丙共聚物中的含量。  相似文献   

10.
综述了近年来偏氟乙烯-六氟丙烯共聚物[poly(vinylidenefluoride-co-hexafluoropropylene),P(VDF-HFP)]基微孔-凝胶聚合物作为锂离子电池聚合物电解质的研究进展,内容包括该类聚合物电解质的制备方法及其改性,并展望了其发展趋势.随着技术的进一步发展,完全可以制备出性能优良的聚合物锂离子电池.  相似文献   

11.

Electrophilic trisubstituted ethylene monomers, alkoxy ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 2‐OCH3, 3‐OCH3, 4‐OCH3, 2‐OCH2CH3, 3‐OCH2CH3, 4‐OCH2CH2CH3, 4‐OCH2CH2CH2CH3), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ACBN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

12.

Electrophilic trisubstituted ethylene monomers, some ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 3‐Br, 4‐CH3O; 5‐Br, 2‐CH3O; 4‐Cl, 3‐NO2; 5‐Cl, 2‐NO2; 2‐CN, 3‐CN, 4‐CN, and 4‐(CH3)2N), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–800°C range.  相似文献   

13.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 4‐(CH3)2N, 4‐CH3CO2, 4‐CH3CONH, 2‐CN, 3‐CN, 4‐CN, 4‐(C2H5)2N) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

14.
通过氯磺化共聚物的水解合成了乙烯-丙烯共聚物磺酸钠离聚物,对离聚物的结晶度和其中硫、氯、钠元素的含量进行了表征.当离子含量达到5—7 mol%时,离聚物的LAXD曲线出现离子峰;DSC指出T_g急剧升高,而低于此离子浓度的离聚物均不出现这些现象.反映出此离子浓度下的离聚物,离子基因可能聚集形成离子簇结构.  相似文献   

15.
Electrophilic trisubstituted ethylene monomers, some ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 3‐C6H5O, 4‐C6H5O, 3‐C6H5CH2O, 4‐C6H5CH2O, 4‐CH3CO2, 4‐CH3CONH, 4‐(C2H5)2N) were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High T g of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

16.
Electrophilic trisubstituted ethylene monomers, alkyl ring substituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H4CH[dbnd]C(CN)CO2CH3, where R is 2‐methyl, 3‐methyl, 4‐methyl, 4‐isopropyl, and 2,5‐dimethyl were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H and 13C NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 260–400°C range.  相似文献   

17.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 3‐benzyloxy, 4‐benzyloxy, 3‐ethoxy‐4‐methoxy, 3‐bromo‐4‐methoxy, 5‐bromo‐2‐methoxy, 2‐chloro‐6‐fluoro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

18.
In order to obtain information about the copolymerization process of vinyltrimethyl silane with comonomers of different chemical structure, copolymers containing vinyltrimethylsilane and methyl methacrylate at different compositions were synthesized and characterized. Comparison of the reactivity ratios of the resulting copolymers with those containing N-vinyl-2-pyrro-lidone and 2-vinylpyridine previously reported and other related comonomers with different chemical structure allows us to establish some reactivity structure relationship and a generalization for these systems. The monomer reactivity ratios r1 and r2 (MRR) were estimated by using the classical linear fitting procedures and also through a computer program based on a nonlinear minimization algorithm, starting from the r1 and r2 values obtained by the former procedures.  相似文献   

19.
Electrophilic trisubstituted ethylene monomers, halogen ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH [dbnd]C(CN)CON(CH3)2 (where R is 2‐Br, 3‐Br, 4‐Br, 2‐Cl, 3‐Cl, 4‐Cl, 2‐F, 3‐F, 4‐F), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号