首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
《Mendeleev Communications》2022,32(4):419-432
The development of various heterobifunctional constructs dubbed PRoteolysis-TArgeting Chimeras (PROTACs) has gained a significant impetus in the last few years. A viable alternative to the traditional occupancy-based inhibition of aberrantly hyperactive proteins, PROTACs operate by an event-based catalytic mechanism bringing together the protein of interest (POI, to be degraded) and E3 ubiquitin ligases. The formation of the ternary complex ‘POI–PROTAC–E3 ubiquitin ligase’ is the critical step which leads to the ubiquitination of the POI and its proteasomal degradation. The current Focused Review aims to highlight the syntheses of selected innovative PROTAC-type degraders of the therapeutically important protein targets as well as some notable chemical aspects of PROTAC construction. The overview is focusing on PROTACs aimed at recruiting Cereblon, the most exploited E3 ligase for targeted protein degradation.  相似文献   

2.
Protein degradation by the Ubiquitin-Proteasome System is one of the main mechanisms of the regulation of cellular proteostasis, and the E3 ligases are the key effectors for the protein recognition and degradation. Many E3 ligases have key roles in cell cycle regulation, acting as checkpoints and checkpoint regulators. One of the many important proteins involved in the regulation of the cell cycle are the members of the Histone Deacetylase (HDAC) family. The importance of zinc dependent HDACs in the regulation of chromatin packing and, therefore, gene expression, has made them targets for the design and synthesis of HDAC inhibitors. However, achieving potency and selectivity has proven to be a challenge due to the homology between the zinc dependent HDACs. PROteolysis TArgeting Chimaera (PROTAC) design has been demonstrated to be a useful strategy to inhibit and selectively degrade protein targets. In this review, we attempt to summarize the E3 ligases that naturally ubiquitinate HDACs, analyze their structure, and list the known ligands that can bind to these E3 ligases and be used for PROTAC design, as well as the already described HDAC-targeted PROTACs.  相似文献   

3.
Proteolysis Targeting Chimera (PROTAC) technology is a rapidly emerging alternative therapeutic strategy with the potential to address many of the challenges currently faced in modern drug development programs. PROTAC technology employs small molecules that recruit target proteins for ubiquitination and removal by the proteasome. The synthesis of PROTAC compounds that mediate the degradation of c‐ABL and BCR‐ABL by recruiting either Cereblon or Von Hippel Lindau E3 ligases is reported. During the course of their development, we discovered that the capacity of a PROTAC to induce degradation involves more than just target binding: the identity of the inhibitor warhead and the recruited E3 ligase largely determine the degradation profiles of the compounds; thus, as a starting point for PROTAC development, both the target ligand and the recruited E3 ligase should be varied to rapidly generate a PROTAC with the desired degradation profile.  相似文献   

4.
Aberrantly elevated steroid receptor coactivator-1 (SRC-1) expression and activity are strongly correlated with cancer progression and metastasis. Here we report, for the first time, the development of a proteolysis targeting chimera (PROTAC) that is composed of a selective SRC-1 binder linked to a specific ligand for UBR box, a unique class of E3 ligases recognizing N-degrons. We showed that the bifunctional molecule efficiently and selectively induced the degradation of SRC-1 in cells through the N-degron pathway. Importantly, given the ubiquitous expression of the UBR protein in most cells, PROTACs targeting the UBR box could degrade a protein of interest regardless of cell types. We also showed that the SRC-1 degrader significantly suppressed cancer cell invasion and migration in vitro and in vivo. Together, these results demonstrate that the SRC-1 degrader can be an invaluable chemical tool in the studies of SRC-1 functions. Moreover, our findings suggest PROTACs based on the N-degron pathway as a widely useful strategy to degrade disease-relevant proteins.  相似文献   

5.
Aberrantly elevated steroid receptor coactivator‐1 (SRC‐1) expression and activity are strongly correlated with cancer progression and metastasis. Here we report, for the first time, the development of a proteolysis targeting chimera (PROTAC) that is composed of a selective SRC‐1 binder linked to a specific ligand for UBR box, a unique class of E3 ligases recognizing N‐degrons. We showed that the bifunctional molecule efficiently and selectively induced the degradation of SRC‐1 in cells through the N‐degron pathway. Importantly, given the ubiquitous expression of the UBR protein in most cells, PROTACs targeting the UBR box could degrade a protein of interest regardless of cell types. We also showed that the SRC‐1 degrader significantly suppressed cancer cell invasion and migration in vitro and in vivo. Together, these results demonstrate that the SRC‐1 degrader can be an invaluable chemical tool in the studies of SRC‐1 functions. Moreover, our findings suggest PROTACs based on the N‐degron pathway as a widely useful strategy to degrade disease‐relevant proteins.  相似文献   

6.
Proteolysis targeting chimeras(PROTACs) are bispecific molecules containing a target protein binder and a ubiquitin ligase binder connected by a linker. Recently, some heterobifunctional small molecule bromodomain-containing protein 4(BRD4) degraders based on the concept of PROTACs were designed to induce the degradation of BRD4 protein. Herein, we synthesized a new class of PROTAC BRD4 degraders. One of the most promising compound 22f exhibited robust potency of BRD4 inhibition with IC50 value of (9.4±0.6) nmol/L. Furthermore, compound 22f potently inhibited cell proliferation in BRD4-sensitive cell lines RS4;11 with IC50 value of (27.6±1.6) nmol/L and capable of inducing degradation of BRD4 protein at 0.5―1.0 μmol/L in the RS4;11 cells. These data establish that compound 22f is a potent and efficacious BRD4 degrader.  相似文献   

7.
Constraining a molecule in its bioactive conformation via macrocyclization represents an attractive strategy to rationally design functional chemical probes. While this approach has been applied to enzyme inhibitors or receptor antagonists, to date it remains unprecedented for bifunctional molecules that bring proteins together, such as PROTAC degraders. Herein, we report the design and synthesis of a macrocyclic PROTAC by adding a cyclizing linker to the BET degrader MZ1. A co‐crystal structure of macroPROTAC‐1 bound in a ternary complex with VHL and the second bromodomain of Brd4 validated the rational design. Biophysical studies revealed enhanced discrimination between the second and the first bromodomains of BET proteins. Despite a 12‐fold loss of binary binding affinity for Brd4, macroPROTAC‐1 exhibited cellular activity comparable to MZ1. Our findings support macrocyclization as an advantageous strategy to enhance PROTAC degradation potency and selectivity between homologous targets.  相似文献   

8.
Constraining a molecule in its bioactive conformation via macrocyclization represents an attractive strategy to rationally design functional chemical probes. While this approach has been applied to enzyme inhibitors or receptor antagonists, to date it remains unprecedented for bifunctional molecules that bring proteins together, such as PROTAC degraders. Herein, we report the design and synthesis of a macrocyclic PROTAC by adding a cyclizing linker to the BET degrader MZ1. A co-crystal structure of macroPROTAC-1 bound in a ternary complex with VHL and the second bromodomain of Brd4 validated the rational design. Biophysical studies revealed enhanced discrimination between the second and the first bromodomains of BET proteins. Despite a 12-fold loss of binary binding affinity for Brd4, macroPROTAC-1 exhibited cellular activity comparable to MZ1. Our findings support macrocyclization as an advantageous strategy to enhance PROTAC degradation potency and selectivity between homologous targets.  相似文献   

9.
《中国化学》2018,36(10):971-977
Small molecule drugs targeting kinases have revolutionized treatment options for millions of patients worldwide, especially in oncology. These targeted treatments have less side effects because they inhibit a specific dysfunctional kinase usually with relatively narrow selectivity. However, kinase inhibitors do have well‐established liabilities, most prominently the emergence of drug resistance. Moreover, the majority of kinases are multidomain and multifunctional proteins that in addition to their enzymatic activity have scaffolding and other roles, and inhibitors seldom address these alternative functions. Recently, small molecule mediated targeted protein degradation emerged as a new pharmacological strategy. The majority of small molecule degraders are bispecific molecules called proteolysis targeting chimeras (PROTACs), and their mechanism of action is based on simultaneous recruitment of the target of interest and an E3 ligase, resulting in target polyubiquitination and eventual destruction by the proteasome. Over the last couple of years, PROTAC strategy has been developed and validated for a range of targets, including kinases. Here, we introduce the targeted protein degradation strategy, provide an overview of representative kinase PROTACs, and describe design rationales, efficacy and specificity. We also discuss their potential advantages, as well as comment on some of the limitations of this emerging pharmacological modality.  相似文献   

10.
PROTACs employ the proteosome-mediated proteolysis via E3 ligase and recruit the natural protein degradation machinery to selectively degrade the cancerous proteins. Herein, we have designed and synthesized heterobifunctional small molecules that consist of different linkers tethering KRIBB11, a HSF1 inhibitor, with pomalidomide, a commonly used E3 ligase ligand for anticancer drug development.  相似文献   

11.
《中国化学快报》2023,34(6):107924
Ibrutinib is a first-line treatment drug for B-cell malignancies. However, resistance to ibrutinib has been reported due to BTKC481S mutation. Although PROTAC strategy is expected to overcome this clinical resistance, it has limitations such as large molecular weight and moderate bioactivity, which restrict its potential clinical application. Herein, we report a new type of potent BTKC481S-targeting PROTAC degrader. Through design, computer-assisted optimization and SAR studies, we have developed a representative BTKC481S degrader L6 with a much smaller molecular weight and improved solubility. Notably, L6 demonstrates better BTK degrading activity and lower IC50 value in ibrutinib-resistant cell line than the first-generation BTK degrader P13I. Optimization strategy of L6 provides a general approach in the development of PROTACs targeting BTK and other proteins for future study.  相似文献   

12.
Trivalent phosphoramidite derivatives could be readily converted by reacting with 1-hydroxy-7-azabenzotriazole to phosphotriester intermediates; these intermediates reacted smoothly with phosphorylated compounds to give pyrophosphate derivatives. This new phosphorylation approach enabled a facile and rapid synthesis of 5'-adenylated DNA oligomers (A(5')ppDNA) on resins using a silyl-type linker. Our new approach could be applied to the synthesis of a 2'-OMe-RNA oligomer containing the 5'-terminal 2,2,7-trimethylguanosine cap structure.  相似文献   

13.
Histone deacetylases (HDACs) play important roles in cell growth, cell differentiation, cell apoptosis, and many other cellular processes. The inhibition of different classes of HDACs has been shown to be closely related to the therapy of cancers and other diseases. In this study, a series of novel CRBN-recruiting HDAC PROTACs were designed and synthesized by linking hydroxamic acid and benzamide with lenalidomide, pomalidomide, and CC-220 through linkers of different lengths and types. One of these PROTACs, denoted 21a, with a new benzyl alcohol linker, exhibited comparably excellent HDAC inhibition activity on different HDAC classes, acceptable degradative activity, and even better in vitro anti-proliferative activities on the MM.1S cell line compared with SAHA. Moreover, we report for the first time the benzyl alcohol linker, which could also offer the potential to be used to develop more types of potent PROTACs for targeting more proteins of interest (POI).  相似文献   

14.
Proteolysis targeting chimeras (PROTACs) technology is an emerging approach to degrade disease-associated proteins. Here, we report carbon-dot (CD)-based PROTACs (CDTACs) that degrade membrane proteins via the ubiquitin-proteasome system. CDTACs can bind to programmed cell death ligand 1 (PD-L1), recruit cereblon (CRBN) to induce PD-L1 ubiquitination, and degrade them with proteasomes. Fasting-mimicking diet (FMD) is also used to enhance the cellular uptake and proteasome activity. More than 99 % or 90 % of PD-L1 in CT26 or B16-F10 tumor cells can be degraded by CDTACs, respectively. Furthermore, CDTACs can activate the stimulator of interferon genes (STING) pathway to trigger immune responses. Thus, CDTACs with FMD treatment effectively inhibit the growth of CT26 and B16-F10 tumors. Compared with small-molecule-based PROTACs, CDTACs offer several advantages, such as efficient membrane protein degradation, targeted tumor accumulation, immune system activation, and in vivo detection.  相似文献   

15.
Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic “hook effect” hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with “anti-hook effect”. The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.  相似文献   

16.
[Reaction: see text] A hydrocarbon oxidation approach has been applied to the construction of several linear (E)-allylic alcohols that have served as intermediates in the synthesis of natural products and natural product-like molecules. In the original syntheses, these intermediates were constructed using a standard Wittig-type olefination approach. We report here that routes to these same intermediates designed around a hydrocarbon oxidation approach are more efficient both in the total number of functional group manipulations (FGMs) and overall steps, as well as in the overall yield.  相似文献   

17.
C-Terminal peptide thioesters are key intermediates in the synthesis/semisynthesis of proteins and of cyclic peptides by native chemical ligation. They are prepared by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal alpha-thioester peptides by SPPS was largely restricted to the use of Boc/Benzyl chemistry due to the poor stability of the thioester bond to the basic conditions required for the deprotection of the N(alpha)-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. This step converts the acyl hydrazine group into a highly reactive acyl diazene intermediate which reacts with an alpha-amino acid alkyl thioester (H-AA-SR) to yield the corresponding peptide alpha-thioester in good yield. This method has been successfully used to prepare a variety of peptide thioesters, cyclic peptides, and a fully functional Src homology 3 (SH3) protein domain.  相似文献   

18.
The development and preparation of the 2,4-dimethoxybenzyl arylhydrazine (DMBAH) linker 3, a new class of "latent" safety-catch linker which is stable under Mitsunobu alkylation conditions and in the presence of amines and hydrazine, is reported. The utility of the new linker is exemplified by the synthesis of ketopiperazines (MKPs) 24 bearing up to four points of diversity using a cyclitive cleavage approach.  相似文献   

19.
Chiral stationary phases (CSPs) containing L-proline indananilide chiral selectors attached through a multivalent dendritic linker to monodisperse macroporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads have been prepared using two different approaches. The convergent method involves the preparation of ligands in solution and their subsequent attachment to the support. The divergent approach is based on the stepwise "on-bead" formation of the linker using methods that are typical of solid-phase synthesis. While the convergent CSPs feature well-defined ligands, their loading is relatively low. In contrast, the divergent technique affords CSPs with higher loading but with more limited control over precise ligand architecture. Excellent enantioselectivities characterized by separation factors of up to 31 were achieved for the separation of racemic N-(3,5-dinitrobenzoyl)-alpha-amino acid alkyl amides with these new CSPs under normal-phase HPLC conditions.  相似文献   

20.
A new linker design for solid phase synthesis has been developed that is cleaved under mild, neutral conditions using samarium(II) iodide. The feasibility of the linker approach has been illustrated in the solid phase synthesis of ketones and amides using an oxygen linker. Insights into the mechanism of the samarium(II) iodide cleavage reaction are described and the potential of a sequential cleavage carbon-carbon bond forming process is assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号