首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An accurate and reliable method for determining polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols is described. This optimised gas chromatography-mass spectrometry (GC-MS) method permits a wide range of concentrations to be analysed without the influence of interferences.Pre-treatment comparison of four kinds of aerosol collector filters determined that quartz and glass fibre filters were the most suitable. Solvents like cyclohexane, toluene, acetonitrile and dichloromethane were evaluated for their PAH-extraction capacity. Ultrasonic extraction using CH2Cl2 was selected because it is rapid and easy; moreover, this solvent increases the sample-throughput capacity.PAH compounds were quantitatively collected and ultrasonically extracted twice using 15 mL of CH2Cl2 for 15 min for each replicate. Rotavapor concentration, fractionation and dissolution were also optimised.A certified standard mixture (16 EPA PAHs), a deuterated compound and precision recovery assays were used for validating the proposed methodology. Adequate analytical parameters were obtained. Detection limits were (1.6-26.3) × 10−5 ng and quantification limits were (5.2-87.6) × 10−5 ng.Analysis of the environmental samples detected 4-10 EPA list PAH compounds. In addition, 2-11 tentative compounds were found, and their molecular structures were described for the first time.Our study of both Youden method and the standard addition method has shown that the proposed determination of PAHs in environmental samples is free of systematic errors.In conclusion, this unbiased methodology improves the identification and quantification of PAH compounds. High sensitivity as well as acceptable detection and quantification limits were obtained for the environmental applications.  相似文献   

2.
Ultra high‐performance liquid chromatography (UHPLC) with evaporative light scattering detection was used for the quantification of steroidal saponins and diosgenin from the rhizomes or tubers of various Dioscorea species and dietary supplements that were purported to contain Dioscorea. The analysis was performed on an Acquity UPLC? system with an UPLC? BEH Shield RP18 column using a gradient elution with water and acetonitrile. Owing to their low UV absorption, the steroidal saponins were observed by evaporative light scattering detection. The 12 compounds could be separated within 15 min using the developed UHPLC method with detection limits of 5–12 µg/mL with 2 μL injection volume. The analytical method was validated for linearity, repeatability, accuracy, limits of detection and limits of quantification. The relative standard deviations for intra‐ and inter‐day experiments were <3.1%, and the recovery efficiency was 97–101%. The total content of standard compounds was found to be in the ranges 0.01–14.5% and 0.9–28.6 mg daily intake for dry plant materials and solid commercial preparations, respectively. UHPLC–mass spectrometry with a quadrupole mass analyzer and ESI source was used only for confirmation of the identity of the various saponins. The developed method is simple, rapid and especially suitable for quality control analysis of commercial products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software‐based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH‐modified DNA samples were obtained by reaction of the anti‐dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2′‐deoxynucleosides. Positive LC/electrospray ionisation (ESI)‐MS/MS collision‐induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2′‐deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2′‐deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH‐adducted 2′‐deoxynucleosides was achieved using online column‐switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H–116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H–116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Conditions were optimized for the separation of priority polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography on short narrow-bore columns (2 × 75 mm). Twelve PAHs were determined by the direct injection of preconcentrated extracts from highly contaminated soil, solid phase of snow water, an aerosol, and surface water. PAH peaks were identified using retention times and spectral ratios (R). In the case of the detection of nonhomogeneous peaks (by the R value), the repeated separation of the sample was proposed with a change in the selectivity of the mobile phase, detection wavelength, and column temperature. The spread of the results of measurements of the PAH mass was estimated at different deviations of R from the standard value.  相似文献   

5.
Desorption electrospray ionization mass spectrometry (DESI-MS) was applied for the first time to the analysis of semivolatile organic compounds (SVOC) in atmospheric aerosols. We took polycyclic aromatic hydrocarbons (PAHs) as representatives of SVOCs. The DESI-MS conditions were optimized and the limit of detection for PAHs was about 10 pg with 5 s sampling time. PAHs from both laboratory-made biomass burning aerosols and ambient aerosols were selectively and rapidly analyzed without extraction or preconcentration. The observed PAH species and their relative ion intensities are discussed. This work demonstrates that DESI-MS is a promising method for rapid semiquantitative analysis of SVOC in atmospheric aerosols.  相似文献   

6.
Solid-phase microextraction coupled with gas chromatography and mass spectrometry (SPME–GC–MS) was developed for the study of interactions between polycyclic aromatic hydrocarbons (PAHs) and dissolved organic matter (DOM). After the determination of the best conditions of extraction, the tool was applied to spiked water to calculate the dissolved organic carbon water distribution coefficient (KDOC) in presence of different mixtures of PAHs and Aldrich humic acid. The use of deuterated naphthalene as internal standard for freely dissolved PAH quantification was shown to provide more accuracy than regular external calibration. For the first time, KDOC values of 18 PAHs were calculated using data from SPME–GC–MS and fluorescence quenching; they were in agreement with the results of previous studies. Competition between PAHs, deuterated PAHs and DOM was demonstrated, pointing out the non-linearity of PAH–DOM interactions and the stronger interactions of light molecular weight PAHs (higher KDOC values) in absence of high molecular weight PAHs.  相似文献   

7.
Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC–MS is challenging due to the non‐polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on‐column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271 > 159; m/z 255 > 145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Lipidomic studies often use liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) for separation, identification, and quantification. However, due to the wide structural diversity of lipids, the most apolar part of the lipidome is often detected with low sensitivity in ESI. Atmospheric pressure (APPI) can be an alternative ionization source since normal-phase solvents are known to enhance photoionization of these classes. In this paper, we intend to show the efficiency of APPI to identify different lipid classes, with a special interest on sphingolipids. In-source APPI fragmentation appears to be an added value for the structural analysis of lipids. It provides a detailed characterization of both the polar head and the non polar moiety of most lipid classes, and it makes possible the detection of all lipids in both polarities, which is not always possible with ESI.  相似文献   

9.
An analytical protocol including solid-phase extraction and purification is described for the individual quantification of polycyclic aromatic hydrocarbon metabolites (hydroxylated PAHs) in liquid biological matrices such as plasma and bile. The method consists in an enzymatic deconjugation followed by a solid-phase extraction on a C18 cartridge and by a cleanup on an NH2 cartridge. Extracts are then submitted to a derivatization step before gas chromatography/mass spectrometry (GC/MS) analysis. The quantification of PAH metabolites is ensured by adding an internal standard, 1-hydroxypyrene deuterated, at the beginning of the protocol. Recoveries obtained for the entire protocol were for the major part of the compounds between 96 and 70%. However, recoveries were not so satisfying concerning 2-hydroxybiphenyl and especially 3-hydroxybenzo(a)pyrene, with 62 and 36% respectively. Finally, the protocol was applied to different fish bile samples and showed its good applicability to fish bile samples. The NH2 cleanup step has been proved to be a very selective purification step, necessary to remove most of the bile pigments before GC/MS injection. Different PAH metabolites could be detected in those natural samples and their quantification allowed us to distinguish different levels of fish exposure.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) with four to six rings are potent carcinogens. This study analyzed ten of the sixteen US EPA priority PAHs using reversed-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) in selected reaction monitoring mode with two ionization sources: positive atmospheric pressure chemical ionization (APCI+) or positive elecrtrospray ionization (ESI+) with tropylium post-column derivatization. Several factors were investigated, including mobile phases, stationary phases of columns and chromatographic temperature, to determine how optimal separation and sensitivity might be achieved. Methanol used as an organic mobile phase provided better sensitivities for most PAHs than acetonitrile, although some PAHs co-eluted. Acidic buffers did not increase analyte signals. Use of Restek Pinnacle II PAH columns (250 x 4.6 mm or 250 x 2.1 mm, 5 microm) with water/acetonitrile gradient at 27 degrees C made possible a good separation of the ten analytes. [M]+. were the best precursor ions in both APCI and ESI, although fluoranthene could not be detected in ESI mode when tropylium post-column derivatization was performed. [M-28]+ and [M-52]+ were the major product ions of PAHs after collision-induced dissociation, a result of neutral losses of C(2)H(4) and (C(2)H(2))(2), respectively. Chromatographic separation for PAH isomers was crucial because the mass spectra were so similar that even MS/MS could not distinguish them from each other. The recoveries of sample preparations of PAHs spiked onto air-sampling filters ranged between 77.5 and 106% with relative standard deviations between 1.1 and 15.9%. This method was validated by analyzing NIST SRM 1649a (urban dust), producing results comparable with the certified PAH concentrations. The detection limits using APCI and ESI interfaces, defined as three times the noise levels, ranged between 0.23 and 0.83 ng and between 0.16 and 0.84 ng of on-column injection, respectively.  相似文献   

11.
Salsolinol, 1‐methyl‐6,7‐dihydroxy‐2,3,4,5‐tetrahydroisoquinoline (SAL), is a precursor of a Parkinsonian neurotoxin, N‐methysalsolinol (N‐methyl‐SAL). Previous studies have shown that individual enantiomers of N‐methyl‐SAL possess distinct neurotoxicological properties. In this work, a chiral high‐performance liquid chromatography (HPLC) method with electrospray ionization tandem mass spectrometric (ESI‐MS/MS) detection was developed for the quantification of (R/S)‐SAL enantiomers. Enantioseparation was achieved on a β‐cyclodextrin‐bonded silica gel column, and the resolved enantiomers were detected by ESI‐MS/MS operated in positive ion mode. The ESI collision‐induced dissociation (CID) mass spectrum of SAL was studied together with that of its deuterium‐labeled analog (i.e. salsolinol‐α,α,α,1‐d4, SAL‐d4) so that the fragmentation pathways could be elucidated. Further, using SAL‐d4 as internal standard in HPLC/MS/MS analysis of SAL improved significantly assay accuracy and reliability. Determination of (R/S)‐SAL enantiomers present in food samples such as dried banana chips was demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A method for the determination of polymer additives like antioxidants, UV absorbers and processing stabilizers using liquid chromatography (LC) coupled with atmospheric pressure photoionization mass spectrometry (APPI-MS) is presented. Ion source parameters were optimized regarding temperatures, gas flow rates, and voltages applied. Detection limits were determined using APPI with or without dopant and were compared with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). Differences between APPI, ESI and APCI are pointed out and the effect of the dopant toluene and acetone is discussed. The optimized method yielded detection limits between 0.001 mg L−1 and 0.022 mg L−1 for 15 different analytes. Linear calibration plots could be obtained for all solutes over a wide concentration range showing satisfying repeatability with standard deviations of peak areas between 3.4% and 7.6%. The results indicate that the developed method can be regarded as suitable for the quantitative determination of polymer additives even at low concentration levels.  相似文献   

13.
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants that are generated by incomplete combustion and by atmospheric transformation of polycyclic aromatic hydrocarbons (PAHs). Many nitro-PAH compounds are potent genotoxins and some are direct acting mutagens. Detection of nitro-PAHs in aerosols is complicated by small sample sizes and nitro-PAH abundances that are 1–2 orders of magnitude less than analogous unsubstituted PAHs. Selective detection of several nitro-PAHs by using laser desorption ionization time-of-flight mass spectrometry in negative ion mode has been achieved. Desorption and ionization of nitro-PAHs were effected by using pulsed UV radiation at 266 and 213 ran. Intense molecular anions were observed in addition to fragments identified as CN? and NO 2 ? , which were characteristic indicators of the presence of nitro-PAHs. Selective detection of nitro-PAHs in negative ion mode was demonstrated in the analysis of a diesel particulate sample.  相似文献   

14.
A liquid chromatography/electrospray (ESI)-tandem mass spectrometric method for the measurement of aflatoxin M1 (AFM1) in milk is described. Milk sample after protein precipitation with acetone was cleaned-up with a Carbograph-4 cartridge. Performances of the ESI source were compared with those of the atmospheric pressure photoionization source (APPI). Although a method quantification limit (MQL) of 6 ng/kg could be achieved operating with APPI source with respect to an MQL of 12 ng/kg with ESI, all the other performances being similar, then ESI was preferred as being more robust and widespread at present.  相似文献   

15.
This paper presents a trisolvent ultrasonic extraction and HPLC analysis method for the determination of 11 polycyclic aromatic hydrocarbons in air particulate collected on an air filter by a commercial high volume air sampler. A reverse phase column, Vydac 201 TP, and a gradient mobile phase, acetonitrile/water, were used. The 11 PAHs, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a, h]anthracene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene were completely resolved under experimental conditions. All the PAHs except coronene were monitored by fluorescence with λex=270 nm, λem>389 nm. Coronene was monitored by UV with λ=300 nm. The methodology was evaluated by spiking SRM 1649 with a PAH standard and then going through different extraction procedures and analyzing the PAH concentrations without clean-up. An external standard method was used for quantitation. The recovery yields for fluoranthene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and indeno[l,2,3-cd]pyrene were above 90%. The detection limits of PAH with fluorescence at λex=270 nm, λem>389 nm ranged from 5.7 pg to 69.5 pg.  相似文献   

16.
Metal salen complexes are one of the most frequently used catalysts in enantioselective organic synthesis. In the present work, we compare a series of ionization methods that can be used for the mass spectral analysis of two types of metalosalens: ionic complexes (abbreviated as Com+X?) and neutral complexes (NCom). These methods include electron ionization and field desorption (FD) which can be applied to pure samples and atmospheric pressure ionization techniques: electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) which are suitable for solutions. We found that FD is a method of choice for recording molecular ions of the complexes containing even loosely bonded ligands. The results obtained using atmospheric pressure ionization methods show that the results depend mainly on the structure of metal salen complex and the ionization method. In ESI spectra, Com+ ions were observed, while in APCI and APPI spectra both Com+ and [Com + H]+ ions are observed in the ratio depending on the structure of the metal salen complex and the solvent used in the analysis. For complexes with tetrafluoroborate counterion, an elimination of BF3 took place, and ions corresponding to complexes with fluoride counterion were observed. Experiments comparing the relative sensitivity of ESI, APCI and APPI (with and without a dopant) methods showed that for the majority of the studied complexes ESI is the most sensitive one; however, the sensitivity of APCI is usually less than two times lower and for some compounds is even higher than the sensitivity of ESI. Both methods show very high linearity of the calibration curve in a range of about 3 orders of magnitude of the sample concentration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
F2‐isoprostanes are a family of prostaglandin F2‐like compounds that are formed by free‐radical‐catalyzed peroxidation of arachidonic acid. Several F2‐isoprostanes, but in particular 8‐epi PGF2α, are widely used as oxidative stress biomarkers. An analytical method based on liquid chromatography with negative electrospray ionization (ESI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of 8‐epi PGF2α concentrations in human plasma, whole blood, erythrocytes and urine. 8‐epi PGF2α‐d4, a stable isotope derivative of 8‐epi PGF2α, was used as an internal standard (IS). A 50 µL sample was focused on‐column and separated on two 3 µm particle size SUPELCOSIL? ABZ+Plus HPLC columns (15 cm × 4.6 mm and 7.5 cm × 4.6 mm) connected in series. An Applied Biosystems 4000 Q TRAP LC/MS/MS system with ESI was operated in multiple reaction monitoring (MRM) mode with the precursor‐to‐product ion transitions m/z 353.4 → 193.1 (8‐epi PGF2α), 357.4 → 197.1 (8‐epi PGF‐d4), used for quantification. The assay was fully validated and found to have adequate accuracy, precision, linearity, sensitivity and selectivity. The mass limit of detection (mLOD) was 1 pg of analyte eluting from the column. The assay has been successfully applied to the analysis of human plasma, whole blood, erythrocytes and urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The air pollution associated with PM2.5 kills 7 million people every year in the world, especially threatening the health of children in developing countries. However, the current air quality standards depend mainly on particle size. PM2.5 contains many carcinogenic/mutagenic polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitropolycyclic aromatic hydrocarbons and oxygenated PAHs. Among them, environmental standards and guidelines have been set for benzo[a]pyrene by few countries and international organizations. Recent research reports showed that these pollutants are linked to diseases other than lungs, and new methods have been developed for determining trace levels of not only PAHs but also their derivatives. It is time to think about the next‐generation environmental standards. This article aims to (a) describe recent studies on the health effects of PAHs and their derivatives other than cancer, (b) describe new analytical methods for PAH derivatives, and (c) discuss the targets for the next‐generation standards.  相似文献   

20.
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) generated from fuel-rich combustion of ethylene-naphthalene mixtures in a jet-stirred-plug-flow reactor were chemically characterized by combined mass spectrometric techniques to yield product composition data that cover the molecular mass region from simple PAHs (naphthalene, 128 u) to large molecules comparable in molecular size (1792 u) to nanoparticles of soot. Two techniques based on atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) were investigated: (1) APCI-MS combined with high-performance liquid chromatography through a heated nebulizer interface was found suitable for PAHs up to C36 (448 u). (2) For the characterization of larger PAHs beyond C36, direct liquid introduction (DLI) of sample into an atmospheric-pressure chemical ionization mass spectrometer through a heated nebulizer gave protonated molecular ions for PAHs over the m/z 400–2000 range. Although unequivocal elemental composition information is unattainable from the unit-resolution DLI/APCI-MS data, by starting with structural data from identified C16 to C32 PAHs, and applying PAH molecular growth principles, it was possible to generate PAH molecular maps from the DLI/APCI-MS data from which values for the elemental composition could be derived for all major peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号