首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   

2.
Here, we describe a simple one‐pot solvothermal method for synthesizing MIL‐101(Fe)@polydopamine@Fe3O4 composites from polydopamine‐modified Fe3O4 particles. The composite was used as a magnetic adsorbent to rapidly extract sulfonylurea herbicides. The herbicides were then analyzed by high‐performance liquid chromatography. The best possible extraction efficiencies were achieved by optimizing the most important extraction parameters, including desorption conditions, extraction time, adsorbent dose, salt concentration, and the pH of the solution. Good linearity was found (correlation coefficients >0.9991) over the herbicide concentration range 1–150 μg/L using the optimal conditions. The limits of detection (the concentrations giving signal/noise ratios of 3) were low, at 0.12–0.34 μg/L, and repeatability was good (the relative standard deviations were <4.8%, n = 6). The method was used successfully to determine four sulfonylurea herbicides in environmental water and vegetable samples, giving satisfactory recoveries of 87.1–108.9%. The extraction efficiency achieved using MIL‐101(Fe)@polydopamine@Fe3O4 was compared with the extraction efficiencies achieved using other magnetic composites (polydopamine@Fe3O4, Hong Kong University of Science and Technology (HKUST)‐1@polydopamine@Fe3O4, and MIL‐100(Fe)@polydopamine@Fe3O4). The results showed that the magnetic MIL‐101(Fe)@polydopamine@Fe3O4 composites have great potential for the extraction of trace sulfonylurea herbicides from various sample types.  相似文献   

3.
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid‐phase extraction. They were obtained through the copolymerization of a 1,8‐di(3‐vinylimidazolium)octane‐based ionic liquid with vinyl‐modified SiO2@Fe3O4, and were characterized by FTIR spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1–100 μg/L is obtained for all analytes, except for parathion (2–200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2–0.8 μg/L, and intraday and interday relative standard deviations are 1.7–7.4% (n = 5) and 3.8–8.0% (n = 3), respectively. The magnetic solid‐phase extraction combined with high‐performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations.  相似文献   

4.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

5.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

6.

Magnetic graphene oxide/lanthanum phosphate nanocomposite (MGO@LaP) was synthesized and used as an efficient adsorbent for magnetic dispersive microsolid-phase extraction (MD-µ-SPE) of pesticides before gas chromatography–electron capture detector (GC–ECD) analysis. The adsorbent was thoroughly characterized with scanning electron microscopy, vibrating sample magnetometer, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Optimized extraction conditions were investigated concerning extraction time, adsorbent amount, sample pH, and salt amount as well as desorption conditions (type and volume of desorption solvent and desorption time). Under the optimal conditions, the method demonstrated good linearity (3–1500 µg L?1) with satisfactory determination coefficients of >?0.997 and low detection limits for both chlorpyrifos (0.67 µg L?1) and hexaconazole (0.89 µg L?1). Finally, the method showed high analyte relative recoveries in the range of 78–120% for the determination of the selected pesticides in water and fruit juice samples.

  相似文献   

7.
A new type of adsorbent composed of magnetic three‐dimensional graphene coated with silver nanoparticles was synthesized by an electroless technique and used in the magnetic solid‐phase extraction of selected pesticides (fenitrothion, chlorpyrifos, and hexaconazole) before gas chromatography with a micro‐electron capture detector. The adsorbent was characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and field‐emission scanning electron microscopy. The important extraction parameters such as pH, adsorbent dose, extraction time, and desorption conditions were investigated. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–5 ng/g with determination coefficients of 0.991–0.996; limit of detection of 0.07–0.13 ng/g; limit of quantification of 0.242–0.448 ng/g; and the intraday and interday relative standard deviations (= 5 ng/g, = 3) were 3.8–8.7 and 6.6–8.9%, respectively. The developed method was successfully applied for analysis of the selected pesticides in tomato and grape with extraction recoveries in the range of 72.8–109.6%.  相似文献   

8.
In this study, porous sandwich structure Fe3O4 nanoparticles coated by polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were prepared by surface polymerization and were used as the magnetic solid phase extraction adsorbent for the extraction and determination of carbaryl and carbofuran. The Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and β‐cyclodextrin were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. After optimizing the extraction conditions, a method that combined magnetic solid phase extraction with high‐performance liquid chromatography was developed for the determination of carbaryl and carbofuran in apple. The method exhibited a good linearity in the range of 2–400 μg/kg for carbaryl and carbofuran (R= 0.9995), respectively. The limits of detection were 0.5 μg/kg of carbaryl and 0.7 μg/kg for carbofuran in apple, respectively. Extraction recoveries ranged from 94.2 to 103.1% with the preconcentration factor of 300 and the relative standard deviations were less than 5.9%. These results indicated that the method combined magnetic solid phase extraction with high‐performance liquid chromatography and was promising for the determination of carbaryl and carbofuran at trace amounts.  相似文献   

9.
In this work, a magnetic octahedral metal-organic framework (Fe3O4@NH2-MIL-101(Fe)) was synthesized for the magnetic solid-phase extraction of three anthraquinones, including aloe-emodin, emodin, and physcion, in rhubarb. The Fe3O4@NH2-MIL-101(Fe) exhibits a high specific surface area of 259.2 m2/g with an average pore size of 6.0 nm and high magnetic responsivity of 23.4 emu/g, which may be used as an adsorbent for rapid preconcentration and separation of target analytes. The main parameters for magnetic solid-phase extraction of anthraquinones, including the amount of adsorbent, extraction time, extraction temperature, extraction pH, elution solvent, and elution time, were systematically optimized. The whole extraction process requires a very low amount of adsorbent and a small volume of the sample. Besides, under the optimized conditions, the method shows satisfactory spiked recovery for anthraquinones in the range of 93.3–109.1% and the limits of detection are 1.7–3.4 ng/mL. The relative standard deviations for intra- and inter-day precision are 0.2–1.3% and 0.2–0.6%, respectively. The experimental results indicate that the developed method is feasible for the analysis of anthraquinones in rhubarb.  相似文献   

10.
A novel two‐step extraction technique combining ionic‐liquid‐based dispersive liquid–liquid microextraction with magnetic solid‐phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high‐performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid–liquid microextraction, and hydrophobic pelargonic acid modified Fe3O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins‐containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid–liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid–liquid microextraction and magnetic solid‐phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3–103.7% with relative standard deviations of 3.2–6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1, B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.  相似文献   

11.
In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high‐performance liquid chromatography with Fe3O4‐hyperbranched polyester nanocomposite as the adsorbent for magnetic solid‐phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as‐prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15–0.3 μg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples.  相似文献   

12.
This study introduces a reliable and inexpensive magnetic dispersive solid phase extraction to extract imipramine and its primary metabolite (desipramine) from urine samples. To accomplish this aim, Fe3O4 magnetic nanoparticles were synthesized by sonication, subsequently, polycarbonate was precipitated gradually onto the surface of them to form the adsorbent. Extraction recoveries of 85% and 76%, enrichment factors of 57 and 51, limits of detection of 2.5 and 2.8 μg/L, and limits of quantification of 8.3 and 9.3 μg/L were obtained for imipramine and desipramine under the optimal conditions, respectively. In addition, relative standard deviations for intra- (n = 6) and inter-day (n = 5) precisions at two concentrations (50 and 100 μg/L of each analyte) were less than or equal to 4%. Short extraction time, good repeatability, high enrichment factors, and simplicity are the main advantages of the proposed method.  相似文献   

13.
In this work, a magnetic β‐cyclodextrin polymer was successfully prepared and used as an adsorbent for the magnetic solid‐phase extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, flufenoxuron, and chlorfluazuron) from honey, tomato, and environmental water samples. The influence of the main experimental conditions on the extraction was studied. Under the optimized conditions, the β‐cyclodextrin polymer@Fe3O4 showed an excellent extraction performance for the benzoylurea insecticides. A good linearity was obtained for the analytes in the range of 3.0–800 ng/g for honey samples, 0.3–160 ng/g for tomato samples, and 0.1–80.0 ng/mL for water samples, with the correlation coefficients above 0.9998. Satisfactory repeatabilities were achieved, with the relative standard deviations less than 5.7%. The limits of detection (S/N = 3) of the method for the benzoylurea insecticides were 0.2–0.8 ng/g for honey samples, 0.04–0.10 ng/g for tomato samples, and 0.02–0.05 ng /mL for water samples. The method was successfully used for the determination of the six benzoylurea insecticides residues in honey, tomato, and environmental water samples with a satisfactory result.  相似文献   

14.
In this study, corn stalk was used to synthesize a magnetic adsorbent by pyrolysis together with KHCO3 as the chemical activator and iron(III) salt as the magnetic reagent. The characterization by scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption analysis showed that the magnetic carbon adsorbent had a structure of hierarchical pores with a high specific surface area. To evaluate its adsorption performance, the adsorbent was used for the extraction of carbamates pesticides (propoxur, isoprocarb and fenobucarb) from water and zucchini samples before high‐performance liquid chromatography analysis. The result showed that the adsorbent had a good adsorption capability for the analytes. Under the optimized conditions, a good linearity for the analytes existed in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/g for zucchini samples with the correlation coefficients of 0.9992–0.9998. The limits of detection for the analytes at a signal to noise ratio of 3 were 0.03 ng/mL for water samples and 0.20–0.50 ng/g for zucchini samples.  相似文献   

15.
A magnetic solid‐phase extraction adsorbent that consisted of citrus peel‐derived nanoporous carbon and silica‐coated Fe3O4 microspheres (C/SiO2@Fe3O4) was successfully fabricated by co‐precipitation. As a modifier for magnetic microspheres, citrus peel‐derived nanoporous carbon was not only economical and renewable for its raw material, but exerted enormous nanosized pore structure, which could directly influence the type of adsorbed analytes. The C/SiO2@Fe3O4 also possessed the advantages of Fe3O4 microspheres like superparamagnetism, which could be easily separated magnetically after adsorption. Integrating the superior of biomass‐derived nanoporous carbon and Fe3O4 microspheres, the as‐prepared C/SiO2@Fe3O4 showed high extraction efficiency for target analytes. The obtained material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and the Brunauer–Emmett–Teller method, which demonstrated that C/SiO2@Fe3O4 was successfully synthesized. Under the optimal conditions, the adsorbent was selected for the selective adsorption of seven insecticides before gas chromatography with mass spectrometry detection, and good linearity was obtained in the concentration range of 2–200 μg/kg with the correlation coefficient ranging from 0.9952 to 0.9997. The limits of detection were in the range of 0.03–0.39 μg/kg. The proposed method has been successfully applied to the enrichment and detection of seven insecticides in real vegetable samples.  相似文献   

16.
A facile adsorbent, a nanocomposite of Fe3O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid‐phase dispersion extraction. The nanocomposite was synthesized in a one‐step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction and Brunauer–Emmett–Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π–π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05–10 μg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95–95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment.  相似文献   

17.
A magnetic solid-phase extraction technique based on magnetic dendritic structured nanoparticles (Fe3O4@SiO2-NH2-G5) as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been developed to detect diazepam, midazolam, zolpidem, and zaleplon in human urine. With Fe3O4@SiO2-NH2 as the central core, dendrimer (G5) grafted alternately with cyanuric chloride and imidazole were bonded to the surface of the core to synthesize Fe3O4@SiO2-NH2-G5. The morphology and structure of the magnetic materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The key parameters affecting the extraction efficiency were optimized. A satisfactory performance was obtained under the optimum extraction conditions. The proposed method was validated, and the limits of detection of zaleplon, diazepam, zolpidem, and midazolam were 0.05, 0.05, 0.02, and 0.02 ng mL?1, respectively. The linear correlation coefficients r of the four analytes were > 0.996, the intra-day precision was between 2.4 % and 9.4 % with the recoveries between 88.3 % and 104.8 %, and the inter-day precision ranged from 3.9 % to 15.2 % with the recovery in the range of 94.1 %?108.3 %. The magnetic dendritic structure nanomaterial Fe3O4@SiO2-NH2-G5 was successfully used to extract sedative-hypnotic drugs from human urine samples. The Fe3O4@SiO2-NH2-G5-based magnetic solid-phase extraction method eliminates centrifugation and filtration steps as in conventional extraction. Only one step of vortex dispersion extraction could achieve the separation and purification of the target compounds. The proposed method was simple, rapid, environment-friendly, and suitable for the analysis of sedative-hypnotic drugs in human urine.  相似文献   

18.
A magnetic solid phase extraction method based on magnetic covalent organic frameworks (TpBD@Fe3O4; 2,4,6-triformylphloroglucinol (Tp) and benzidine (BD)) combined with high performance liquid chromatography has been developed to detect the sulfonamides including sulfadiazine, sulfamerazine, sulfamethazine, and sulfamethoxazole in milk and meat. TpBD@Fe3O4 were synthesized at room temperature under mild reaction conditions with a simple and rapid operation. The TpBD@Fe3O4 exhibited higher extraction efficiency because of the π–π and electrostatic interactions between the benzene ring structure of the TpBD and the sulfonamide molecules. The extraction conditions including the dosage of adsorbents, the type and dosage of eluent, the elution time, and the pH of the sample solution were fully optimized. The detection results showed good linearity over a wide range (50–5 × 104 ng/mL) and low detection limits (3.39–5.77 ng/mL) for the sulfonamide targets. The practicability of this magnetic solidphase extraction-high-performance liquid chromatography method was further evaluated by analyzing milk and meat samples, with recoveries of the targets of 71.6–110.8% in milk and 71.9–109.7% in pork. The successful detection of sulfonamides residues has demonstrated the TpBD@Fe3O4 excellent practical potential for analyzing pharmaceutical residues in animal-derived foods.  相似文献   

19.
The synthesis of compounds with an excellent adsorption capability plays an essential role to remove contaminants such as phthalic acid esters (PAEs) with potential carcinogenic characteristics from different food products. In this context, for the first time, a novel adsorbent (MWCNT-Fe3O4/Ag) was synthesized by using iron (magnetic agent), and silver (catalytic and surface enhancer agent) to further approach in a magnetic SPE-GC/MS method for determining of PAEs in carbonated soft drink samples. The limit of detection (LOD) and limit of quantification (LOQ) values of MSPE-GC/MS were determined in six PAEs as a range of 10.8–22.5 and 36–75 ng/L, respectively. Also, the calibration curves of PAEs were linear (R2 = 0.9981–0.9995) over the concentration level of 10.000 ng/L and the recoveries of the six PAEs were ranging from 96.60% to 109.22% with the RSDs less than 8%. Moreover, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and transmission electron microscopy analyses (TEM) were utilized to characterize the produced MWCNT-Fe3O4/Ag. Based on the findings, the surface of MWCNT is relatively uniform, which became coarser after loading with Fe3O4/Ag particles. Also, EDX spectrum showed the carbon (C), iron (Fe), oxygen (O), Ag and copper (Cu) are the main components of synthesized MWCNTs-Fe3O4/Ag. The successful adhesion of Fe3O4/Ag on the texture of MWCNTs using a co-precipitation method was confirmed by XRD and FT-IR assays. Additionally, excellent crystallinity and clear lattice nanocrystals fringes of prepared MWCNT-Fe3O4/Ag was demonstrated by TEM analysis. Based on the obtained VSM images, the prepared sorbent (MWCNT-Fe3O4/Ag) has the good magnetic performance for magnetic separation and extraction processes. It was concluded that the synthesized MWCNT-Fe3O4/Ag could be used as an efficient adsorbent for determining contaminants such as PAEs in different beverage samples.  相似文献   

20.
Using commercially available melamine and formaldehyde as the starting materials, a magnetic mesoporous melamine–formaldehyde resin (MMF@Fe3O4) possessing large surface area was prepared via a simple method and could be used as an efficient adsorbent for magnetic solid‐phase extraction. Compared with the traditional synthetic methods of MMF@Fe3O4, this approach is easily operated under mild conditions, is time‐saving and environmentally friendly, and can produce the material in high yields. The as‐prepared MMF@Fe3O4 possesses good adsorption capacity and selectivity for silver ions. The affecting factors such as pH, amount of MMF@Fe3O4, extraction time, desorption solvent, eluent concentration and sample volume were systematically investigated and optimized. Under the optimized conditions, the material exhibited a good response to silver ions at concentrations in the range 2.0–200 μg l?1 with good linearity (r2 = 0.9982), while the limit of detection was found to be 0.12 μg l?1. The material was successfully applied to the determination of silver in a variety of water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号