首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The light-harvesting complexes (LHC) were isolated from the unicellular alga Mantoniella squamata (Prasinophyceae) by sucrose-density centrifugation. Beside the major LHC (II), a photosystem I complex was obtained that could be dissociated into a photosystem I core complex and an associated LHC I. In contrast to other chlorophyll b-containing antennae, both LHC II as well as LHC I were observed to be identical with respect to the following features: the molecular weights, the isoelectric points and the retention behavior on anion-exchange chromatography of the apoproteins, the pigment content and the absorption and fluorescence spectra. We conclude from these results that Mantoniella contains only one homogenous population of LHC, which cooperate with both photosystems not on the basis of specific recognition but on the simple basis of statistical interaction. This is the first report of a chlorophyll b-containing light-harvesting system without any subpopulations: therefore, it is suggested that it arises from a most primitive type of chlorophyll b-containing chloroplast.  相似文献   

2.
A photosystem I (PS I) holocomplex was obtained from barley by ultracentrifugation of PS I-enriched stroma lamellae on sucrose gradients. Further solubilization with glycosidic surfactants followed by Deriphat-poly-acrylamide gel electrophoresis (PAGE) fractionated the holocomplex into its core complex (CC I) and individual light-harvesting I (LHC I) pigment-protein subcomplexes. The LHC I contains chlorophyll a, all of the chlorophyll A of PS I and xanthophylls but no carotenes. Sodium dodecylsulfate PAGE analysis of the subcomplexes shows that barley LHC I is composed of at least five apoproteins having sizes between 11 and 24 kDa. Isolation of a 17 kDa LHC Ic component by Deriphat-PAGE shows it to be a photosynthetic pigment-protein. Room-temperature absorption spectra indicate that LHC Ic is enriched in chlorophyll a in comparison to the LHC Ia and Ib components. The LHC Ic apoprotein is shown to be distinct from the subunit III and IV polypeptides of CC I. Analysis of PS I fractions obtained from sucrose gradients as well as from Deriphat-PAGE indicates that in higher plants an oligomeric structure of the PS I entity exists in vitro.  相似文献   

3.
Using a pump and test beam technique in the frequency domain with pump pulses in the nanosecond time range, the nonlinear transmission properties were investigated at room temperature in photosystem (PS) II membrane fragments and isolated light-harvesting chlorophyll a/b-protein preparations (LHC II preparations). In LHC II preparations and PS II membrane fragments, respectively, pump pulses of 620 nm and 647 nm cause a transmission decrease limited to a wavelength region in the nearest vicinity of the pump pulse wavelength (full width at half maximum ' 0.24 nm). In contrast, at 670 nm neither a transmission decrease nor a narrow band feature were observed. The data obtained for PS II membrane fragments and LHC II preparations at shorter wavelengths (620 nm, 647 nm) were interpreted in terms of excited state absorption of whole pigment-protein clusters within the light-harvesting antenna of photosystem II. The interpretation of the small transmission changes as homogeneously broadened lines led to a transversal relaxation time for chlorophyll in the clusters of about 4 ps.  相似文献   

4.
Polyclonal antibodies against four different apoproteins of either the chlorophyll (Chl) a/b light-harvesting antenna of photosystem I or II, or a chlorophyll-protein complex homologous to CP26 from Chlamydomonas reinhardtii, crossreact with11–13 thylakoid proteins of Chlamydomonas, Euglena gracilis and higher plants. The number of antigenically-related proteins correlates with the quantity of light-harvesting chlorophyll-protein complex (LHC) gene types that have been sequenced in higher plants. The antibodies also react specifically with Chi a/c-binding proteins of three diatoms and Coccolithophora sp. as determined by immunoblot and Ouchterlony assays. Four to six crossreacting proteins are observed in each chromophyte species and a functional role for some can be deduced by antibody reactivity. It appears that despite major differences in the structures of their pigment ligands, at least some domains of Chl-binding LHC apoproteins have been conserved during their evolution, possibly functioning in protein: protein, as opposed to pigment: protein, interactions in photosynthetic membranes.  相似文献   

5.
Abstract— Generation of the nonequilibrium distribution of excited vibrational modes stimulated by electronic energy relaxation in pigment-protein complexes of the light-harvesting antenna of some photosynthetic systems is discussed in this paper. It is shown that the simplest approach to this problem can be achieved by introducing a local temperature, which is a good parameter for describing the nonequilibrium distribution of the local vibrational modes of the pigment molecules and its nearest protein surroundings. Then the transient absorption kinetics is determined by the kinetics of the excitation relaxation as I well as the heating/cooling of the local vibrational modes. Experimentally, this process can be investigated in the i singlet-singlet annihilation conditions that create the i greatest amount of local heating. The systems under in-: vestigation are trimers of bacteriochlorophyll a contain- i ing pigment-protein complexes from the green sulfur i bacterium Chlorobium tepid urn (so-called FMO complexes) and aggregates of the light-harvesting complexes of photosystem II (LHC2) from higher plants containing chlorophyll alb. It was shown that at 77 K the heat redistribution kinetics in LHC2 is on the order of 3040 ps and in FMO it is approximately equal to 26 ps. The local heating effect at room temperature is less pronounced; however, by using longer pulses and at higher excitation energies (on the order of a magnitude higher), an additional kinetics of hundreds of ps, also related to the heating/cooling process, was observed.  相似文献   

6.
Abstract— The spectra of absorption, fluorescence and excitation of monolayers and thin films containing chlorophyll a together with a carotenoid (cis-β-carotene, trans-β-carotene, fucoxanthin, or zeaxanthin), were measured at — 196°C. The concentration ratios used, (Chl)/(Car), were 6:1, 4:1, 3:1, 2:1, 1:1 and 1:3, and the area densities, 3·70, 2·55, 1·76, 0·71, 0·37 and 0·17 nm2/pigment molecule. In dilute monolayers, (3·70 nm2/molecule), with a constant concentration ratio (Chl)/(Car) = 3:1, evidence of three β-carotene forms, with absorption bands at 460, 500 and 520 nm (C460, C500 and C520), and of a chlorophyll a form with an absorption band at 669–672 (Chl669–672) was found. On increasing the density to 0·2–0·3 nm2/molecule, a conversion of C460 and C520 into C500, was observed, and several more additional (probably more strongly aggregated) chlorophyll a forms appeared, with absorption bands at 672–733 nm. With excess carotene [(Chi)/(Car) = 1:3] the forms C460, C500, C520 and Chl669–672 were present even in the most dense films (0·2–0·3 nm2/molecule). The same was found with other carotenoids: if one of the pigments was in excess, aggregated forms of the other tended to disappear. In the transfer of energy from carotenoids to chlorophyll a, C500 was found to be the main donor. In layers with a concentration ratio (Chl)/(Car) = 3:1, the efficiency of transfer was less than 10 per cent at the lowest density used (3·70 nm2/molecule); it increased to 50 per cent, as the density was increased to 0·20 nm2/molecule. When the relative concentration of the carotenoid was increased to (Chl)/(Car) = 1:1, the efficiency of energy transfer dropped to 25 per cent even at 0·20 nm2/molecule. It seems that the efficiency of energy transfer between carotene molecules (prior to its transfer to chlorophyll a) is low, and effective transfer occurs only between β-carotene and immediately adjacent chlorophyll a molecules.  相似文献   

7.
Abstract— The chlorophyll a fluorescence properties of Gonyaulax polyedra cells before and after transfer from a lightdark cycle (LD) to constant dim light (LL) were investigated. The latter display a faster fluorescence transient from the level ‘I’ (intermediary peak) to ‘D’ (dip) to ‘P’ (peak) than the former (3 s as compared to 10 s), and a different pattern of decline in fluorescence from ‘I’ to ‘D’ and from ‘P’ to the steady state level with no clearly separable second wave of slow fluorescence change, referred to as ‘s' (quasi steady state)→‘M’ (maximum) →‘T’ (terminal steady state). The above differences are constant features of cells in LD and LL, and are not dependent on the time of day. They are interpreted as evidence for a greater ratio of photosystem II/photosystem I activity in cells in LL. After an initial photoadaptive response following transfer from LD to LL, the cell absorbance at room temperature and fluorescence emission spectra at 77 K for cells in LL and LD are comparable. The major emission peak is at 685–688 nm (from an antenna Chl a 680, perhaps Chl a-c complex), but, unlike higher plants and other algae, the emission bands at 696–698 nm (from Chl aII complex, Chl a 685, close to reaction center II) and 710–720 nm (from Chl a1, complexes, Chl a 695, close to reaction center I) are very minor and could be observed only in the fluorescence emission difference spectra of LL minus LD cells and in the ratio spectra of DCMU-treated to non-treated cells. Comparison of emission spectra of cells in LL and LD suggested that, in LL, there is a slightly greater net excitation energy transfer from the light-harvesting peridinin-Chl a (Chl a 670) complex, fluorescing at 675 nm, to the other antenna chlorophyll a complex fluorescing at 685–688 nm, and from the Chl a., complex to the reaction center II. Comparison of excitation spectra of fluorescence of LL and LD cells, in the presence of DCMU, confirmed that cells in LL transfer energy more extensively from the peridinin-Chl a complex to other Chl a complexes than do cells in LD.  相似文献   

8.
Chlorophylls a and b (Chla/b) are responsible for light-harvesting by photosynthetic proteins in plants. They display broad absorption in the visible region with multiple bands, due to the asymmetry of the macrocycle and strong vibronic coupling. Their photophysics relies on the microenvironment, with regard to transition energies as well as quenching of triplet states. Here, we firmly establish the splitting of the Q and Soret bands into x- and y- polarized bands for the isolated molecules in vacuo, and resolve vibronic features. Storage-ring experiments reveal that dissociation of photoexcited charge-tagged complexes occurs over several milliseconds, but with two different time constants. A fast decay is ascribed to dissociation after internal conversion and a slow decay to the population of a triplet state that acts as a bottleneck. Support for the latter is provided by pump-probe experiments, where a second laser pulse probes the long-lived triplet state.  相似文献   

9.
Pronounced aggregation of the photosystem II light-harvesting complex (LHC II) was observed in low-lightgrown tobacco plants stressed with a strong CO2 deficit for 2–3 days. The LHC II aggregates showed a typical band at 697–700 nm (F699) in low-temperature emission spectra. Its excitation spectrum corresponded to that of detergent-solubilized LHC II. Formation of F699 in stressed plants was not reversed in the dark and leaves did not contain any zeaxanthin showing that neither a light-induced transthylakoid pH gradient nor zeaxanthin was required for LHC II aggregation. The CO2-stressed plants showed clear signs of photodamage: depression of the potential yield of photosystem II photochemistry (F,/FM) by 50–70% and a decline in chlorophyll content by 10–15%. Therefore, we propose that the photodamage to the photosynthetic apparatus is the cause of the LHC II aggregation in plants. The F699 exhibited a reversible decrease of its intensity upon irradiation of leaves with intensive light. There was no or only slight decrease around 700 nm in unstressed plants. The nonphotochemical quenching of chlorophyll fluorescence showed the opposite relation, being higher before than after the strong CO2 deficit. This discrepancy was likely related to the different LHC II aggregation state in control and stressed plants.  相似文献   

10.
A major light-harvesting complex (LHC) has been obtained from thylakoids of Amphidinium carterae solubilized with digitonin or decylmaltoside and separated by sucrose-gradient centrifugation. The digitonin-LHC forms a dark brown band at -17% sucrose and the decylmaltoside LHC one at -7% sucrose. Excellent energy transfer is retained from chlorophyll c and carotenoid to chlorophyll a. Absorbance and fluorescence excitation spectra show the existence of two major forms of chlorophyll c, one absorbing at 634 nm and the other at 649 nm. Linear dichroism spectra show the Qy transition of both forms of chlorophyll c to be aligned at <35° to the membrane plane. On sodium dodecylsulfate polyacrylamide gels the complex resolves as a single band of 19 kDa. A partial amino acid sequence shows the N-terminus to be unblocked but modified; there is a persistent ambiguity of Ser/Asn at residue 4 and evidence for multiple but very similar polypeptides within the 19 kDa band. The peptide has strong identity with the N-terminal regions of LHC from Phaeodactylum and Pavlova and LHC 1 of higher plants. Antibodies to the 19 kDa peptide react weakly with LHC of brown algae, diatoms and Prymnesiophytes but not with those of higher plants or Cryptophytes.  相似文献   

11.
Abstract. Chlorophyll-protein complexes enriched in the Photosystem I reaction center chlorophyll (P700) exhibit a fluorescence emission maximum at 696 nm at - 196°C The height of this 696 nm emission relative to the emission at 683 nm from antenna chlorophyll a increases proportionally with the P700 concentration while the total fluorescence yield of the complex decreases. The 696 nm emission could possibly be from an absorbing form of antenna chlorophyll a that may be somewhat enriched along with P700 in Photosystem I fractions. However, evidence resulting from glycerol treatment which appears to decrease the rate of resonance energy transfer between antenna chlorophyll and P700 favors the hypothesis that the emission comes from a photooxidized P700 dimer (Chl+-Chl) absorbing near 690 nm. In turn, this fluorescence evidence provides additional support for the model of a P700 dimer involving exciton interaction. Absorption in the wavelength region of 450 nm specifically excites emission at 696 nm from the P700-chlorophyll complex.  相似文献   

12.
The low-temperature (77 K) emission and excitation chlorophyll fluorescence spectra in thylakoid membranes isolated from pea mutants were investigated. The mutants have modified pigment content, structural organization, different surface electric properties and functions [Dobrikova et al., Photosynth. Res. 65 (2000) 165]. The emission spectra of thylakoid membranes were decomposed into bands belonging to the main pigment protein complexes. By an integration of the areas under them, the changes in the energy distribution between the two photosystems as well as within each one of them were estimated. It was shown that the excitation energy flow to the light harvesting, core antenna and RC complexes of photosystem II increases with the total amount of pigments in the mutants, relative to the that to photosystem I complexes. A reduction of the fluorescence ratio between aggregated trimers of LHC II and its trimeric and monomeric forms with the increase of the pigment content (chlorophyll a, chlorophyll b, and lutein) was observed. This implies that the closer packing in the complexes with a higher extent of aggregation regulates the energy distribution to the PS II core antenna and reaction centers complexes. Based on the reduced energy flow to PS II, i.e., the relative increased energy flow to PS I, we hypothesize that aggregation of LHC II switches the energy flow toward LHC I. These results suggest an additive regulatory mechanism, which redistributes the excitation energy between the two photosystems and operates at non-excess light intensities but at reduced pigment content.  相似文献   

13.
Abstract— Absorption and emission spectra are reported for polar and non-polar solutions of chlorophyll a and chlorophyll b. These spectra can be interpreted in terms of the formation of chlorophyll dimers and more highly aggregated forms. The phosphorescence spectra of polar and non-polar solutions of chlorophyll a are identical and are associated with emission from a π-π-* triplet state.  相似文献   

14.
Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (TmS) spectra, recorded at ambient temperature and under non-reducing or reducing conditions, are reported. The carotenoid (Car) pigments in both species transfer their singlet excitation to bacteriochlorophyll c (BChlc) with an efficiency which is high (between 0.5 and 0.8) but smaller than unity; BChlc and bacteriochlorophyll a (BChla) transfer their triplet excitation to the Car's with nearly 100% efficiency. The lifetime of the Car triplet states is approximately 3 micros, appreciably shorter than that of the Car triplets in the light-harvesting complex II (LHCII) in green plants and in other antenna systems. In both types of chlorosomes the yield of BChlc triplets (as judged from the yield of the Car triplets) remains insensitive to the redox conditions. In notable contrast the yield of BChlc singlet emission falls, upon a change from reducing to non-reducing conditions, by factors of 4 and 35 in Cfx. aurantiacus and Cb. tepidum, respectively. It is possible to account for these observations if one postulates that the bulk of the BChlc triplets originate either from a large BChlc pool which is essentially non-fluorescent and non-responsive to changes in the redox conditions, or as a result of a process which quenches BChlc singlet excitation and becomes more efficient under non-reducing conditions. In chlorosomes from Cfx. aurantiacus whose Car content is lowered, by hexane extraction, to 10% of the original value, nearly one-third of the photogenerated BChlc triplets still end up on the residual Car pigments, which is taken as evidence of BChlc-to-BChlc migration of triplet excitation; the BChlc triplets which escape rapid static quenching contribute a depletion signal at the long-wavelength edge of the Qy absorption band, indicating the existence of at least two pools of BChlc.  相似文献   

15.
Nonphotochemical quenching (NPQ) is known to depress in vivo fluorescence (IVF) of chlorophyll a (Chla) in aquatic environments, which makes it difficult to interpret the hour-to-hour variations in Chla measured by in situ fluorometers. We hypothesized that ratios between quenched and unquenched IVF are a function of both NPQ and photochemical quenching. In this study, two diatom model species Thalassiosira pseudonana (CCMP1335) and Thalassiosira weissflogii (CCMP1047) incubated under a sinusoidal light:dark cycle were studied; IVF was recorded continuously, and Chla and photo-physiological variables were measured seven times a day. The maximal decline in Chla-specific IVF (IVFB) attributable to quenching was 50% under the experimental settings. An NPQ and photochemical quenching-based modeling equation exhibited a better match to the measured IVFB than equations representing the sole NPQ effect. Photochemical quenching induced by measuring light beam varied substantially during the day, and the part of the model for this process is excitation intensity-dependent (which is differed between models of in situ fluorometers, implying no straightforward method to correct Chla for all instrument models, instrument-specific parameterization is required). The forms of the IVFB-light relationship are discussed as well. The findings foster a holistic understanding of NPQ effects on in vivo Chla fluorometry.  相似文献   

16.
Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis which protects plants against excess excitation energy and is of crucial importance for their survival and fitness. Recently, carotenoid radical cation (Car*+) formation has been discovered to be a key step for the feedback deexcitation quenching mechanism (qE), a component of NPQ, of which the molecular mechanism and location is still unknown. We have generated and characterized carotenoid radical cations by means of resonant two color, two photon ionization (R2C2PI) spectroscopy. The Car*+ bands have maxima located at 830 nm (violaxanthin), 880 nm (lutein), 900 nm (zeaxanthin), and 920 nm (beta-carotene). The positions of these maxima depend strongly on solution conditions, the number of conjugated C=C bonds, and molecular structure. Furthermore, R2C2PI measurements on the light-harvesting complex of photosystem II (LHC II) samples with or without zeaxanthin (Zea) reveal the violaxanthin (Vio) radical cation (Vio*+) band at 909 nm and the Zea*+ band at 983 nm. The replacement of Vio by Zea in the light-harvesting complex II (LHC II) has no influence on the Chl excitation lifetime, and by exciting the Chls lowest excited state, no additional rise and decay corresponding to the Car*+ signal observed previously during qE was detected in the spectral range investigated (800-1050 nm). On the basis of our findings, the mechanism of qE involving the simple replacement of Vio with Zea in LHC II needs to be reconsidered.  相似文献   

17.
Abstract— The action of Triton X-100 upon photosynthetic membranes which are devoid of carotenoids produces a small Photosystem I particle (HP700 particle) which is active in N ADP photoreduction and has a [Chl]/[P700] ratio of 30. The properties of the HP700 particle indicate that it is a reaction center complex which is served by an accessory complex containing the additional light-harvesting chlorophyll of Photosystem I as well as the cytochromes and plastoquinone. When Photosystem II particles obtained by the action of Triton X-100 are further washed with a solution 0.5 M in sucrose and 0.05 M in Tris buffer (pH 8.0), chlorophyll-containing material is released. After centrifugation, the supernatant contains about 1 per cent of the chlorophyll and contains three types of particles which can be separated by sucrose density gradient centrifugation. One of these particles, designated TSF-2b, has the same pigment composition as the original Photosystem II fragment, contains cytochrome 559, and shows Photosystem II activity (DCMU-sensitive diphenylcarbazide-supported photoreduction of 2,6-dichlorophenolindophenol). The other two particles (TSF-2a and TSF-2a′) have a [Chl a]/[Chl b] ratio of 8, have a low concentration of xanthophylls, and show a [Chl]/[Cyt 5591 ratio of about 20. Only the TSF-2a particle is active in the Photosystem II reaction described above. On the basis of these data, it is proposed that the Photosystem II unit consists of a reaction center complex which contains Chl a, Cyt 559, and an acceptor for the photochemical reaction. The reaction center complex would be served by an accessory complex which contains the light-harvesting pigments, Chl a. Chi b, and xanthophyils.  相似文献   

18.
Abstract— The photosystem II (PSII) reaction center in higher plants is susceptible to photoinhibitory molecular damage of its component pigments and proteins upon prolonged exposure to excess light in air. Higher plants have a limited capacity to avoid such damage through dissipation, as heat, of excess absorbed light energy in the PSII light-harvesting antenna. The most important pho-toprotective heat dissipation mechanism, induced under excess light conditions, includes a concerted effect of the trans-thylakoid pH gradient (ΔpH) and the carotenoid pigment interconversions of the xanthophyll cycle. Co-incidentally, both the photoprotective mechanism and photoinhibitory PSII damage decrease the PSII chlorophyll a (Chi a) fluorescence yield. In this paper we present a comparative fluorescence lifetime analysis of the xanthophyll cycle- and photoinhibition-dependent changes in PSII Chi a fluorescence. We analyze multifrequency phase and modulation data using both multicomponent exponential and bimodal Lorentzian fluorescence lifetime distribution models; further, the lifetime data were obtained in parallel with the steady-state fluorescence intensity. The photoinhi-bition was characterized by a progressive decrease in the center of the main fluorescence lifetime distribution from ~2 ns to ~0.5 ns after 90 min of high light exposure. The damaging effects were consistent with an increased nonra-diative decay path for the charge-separated state of the PSII reaction center. In contrast, the ΔpH and xanthophyll cycle had concerted minor and major effects, respectively, on the PSII fluorescence lifetimes and intensity (Gilmore et ah, 1996, Photosynth. Res., in press). The minor change decreased both the width and lifetime center of the longest lifetime distribution; we suggest that this change is associated with the ΔpH-induced activation step, needed for binding of the deepoxidized xanthophyll cycle pigments. The major change increased the fractional intensity of a short lifetime distribution at the expense of a longer lifetime distribution; we suggest that this change is related to the concentration-dependent binding of the deepoxidized xanthophylls in the PSII inner antenna. Further, both the photoinhibition and xanthophyll cycle mechanisms had different effects on the relationship between the fluorescence lifetimes and intensity. The observed differences between the xanthophyll cycle and photoinhibition mechanisms confirm and extend our current basic model of PSII exciton dynamics, structure and function.  相似文献   

19.
Abstract The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants dencient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

20.
Abstract— The short-term adaptation of intact leaves to an increase in light intensity was studied by an analysis of chlorophyll fluorescence and oxygen evolution monitored by photoacoustics. An increase in light intensity led to an oxygen “gush”. This “gush” was followed by a large (up to 120%) biphasic increase in the yield of oxygen evolution characterized by a fast phase (T = 0.5–2 min) and a slow phase (T = 4–20 min). The fast phase of the increase in oxygen yield was coupled to a decrease of fluorescence, whereas the slow phase was accompanied by a parallel fluorescence increase. A comparison of fluorescence parameters with oxygen yield indicates that the slow phase of the increase in oxygen yield was coupled to an increase in the antenna size of photosystem II. The slow phase was not inhibited by the uncoupler Nigericin but it was absent in chlorophyll-b-less barley mutants deñcient in the light harvesting chlorophyll a/b protein complex of photosystem II (LHC II). These experiments indicate that changes in the LHC II mediated energy distribution, which occur in the time-range of several minutes, are involved in the adaptation to changing light intensities. Moreover, electrophoretic analysis of 32P orthophosphate labeled leaf discs adapted to low and high light intensities suggests that the slow phase of the increase in oxygen evolution involves dephosphorylation of the 25 kDa polypeptide of LHC II, by a small extent of 12%. The trigger for the slow phase of the increase in oxygen yield does not involve the oxidation of the plastoquinone pool. It was found that in response to the increased light intensity, the plastoquinone pool became more reduced as judged by model calculations. Experiments with the uncoupler Nigericin suggest that the control of the slow phase of adaptation to increased light intensity was also not exerted by the pH gradient across the thylakoid membrane. The similarities between the adaptation to increased light intensity and the state II to state I transition suggest that both adaptation phenomena involve LHC II dephosphorylation possibly triggered by the cytochrome b6/f complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号