首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exposure and accessibility of the tryptophan residues in the chitooligosaccharide-specific pumpkin (Cucurbita maxima) phloem exudate lectin (PPL) have been investigated by fluorescence spectroscopy. The emission λmax of native PPL, seen at 338 nm was red-shifted to 348 nm upon denaturation by 6 M Gdn.HCl in the presence of 10 mM β-mercaptoethanol, indicating near complete exposure of the tryptophan residues to the aqueous medium, whereas a blue-shift to 335 nm was observed in the presence of saturating concentrations of chitotriose, suggesting that ligand binding leads to a decrease in the solvent exposure of the tryptophan residues. The extent of quenching was maximum with the neutral molecule, acrylamide whereas the ionic species, iodide and Cs+ led to significantly lower quenching, which could be attributed to the presence of charged amino acid residues in close proximity to some of the tryptophan residues. The Stern–Volmer plot for acrylamide was linear for native PPL and upon ligand binding, but became upward curving upon denaturation, indicating that the quenching occurs via a combination of static and dynamic mechanisms. In time-resolved fluorescence experiments, the decay curves could be best fit to biexponential patterns, for native protein, in the presence of ligand and upon denaturation. In each case both lifetimes systematically decreased with increasing acrylamide concentrations, indicating that quenching occurs predominantly via a dynamic process.  相似文献   

2.
Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.  相似文献   

3.
Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent‐accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
Fluorescence emission after two-photon excitation at 532 nm by means of a Nd : YAG laser is observed in apohemoglobin, hemoglobin, albumin and tryptophan at room temperature. The experimental results show that the fluorescence of these proteins originates from tryptophan residues. No fluorescence of a biphotonic nature could be detected from lysozyme and tyrosine.  相似文献   

5.
Fluorescence quenching and time-resolved fluorescence studies have been performed on the galactose-specific lectin purified from snake gourd (Trichosanthes anguina) seeds, in order to investigate the tryptophan accessibility and environment in the native protein and in the presence of bound ligand. Estimation of the tryptophan content by N-bromosuccinimide modification in the presence of 8 M urea yields four residues per dimeric molecule. The emission spectrum of native lectin in the absence as well as in the presence of 50 mM methyl--d-galatopyranoside (MeGal) shows a maximum around 331 nm, which shifts to 361.8 nm upon reduction of the disulfide bonds and denaturation with 8 M urea, indicating that all four tryptophan residues in the native state of this protein are in a hydrophobic environment. The extent of quenching that is observed is highest with acrylamide, intermediate with succinimide, and low with Cs+ and I, further supporting the idea that the tryptophan residues are predominantly buried in the hydrophobic core of the protein. The presence of MeGal (50 mM) affects the quenching only marginally. Time-resolved fluorescence measurements yield bi-exponential decay curves with lifetimes of 1.45 and 4.99 ns in the absence of sugar, and 1.36 and 4.8 ns in its presence. These results suggest that the tryptophan residues are not directly involved in the saccharide binding activity of the T. anguina lectin. Of the four quenchers employed in this study, the cationic quencher, Cs+, is found to be a very sensitive probe for the tryptophan environment of this lectin and may be useful in investigating the environment of partially buried tryptophan residues and unfolding processes in other proteins as well.  相似文献   

6.
The excitation and emission spectra have been determined for the fluorescence from trypto-phan residues in dry keratin. The fluorescence decay was also measured and shown to be a single exponential with a rather long lifetime of 6.9 ns. It is suggested that the emission takes place from a state formed by interaction between the 1La state of the tryptophan residues and neighbouring polar or polarizable groups in the protein. The fluorescence excitation spectrum displays a peak at 290 nm, and its appearance at this position rather than at 280 nm, which is the absorption maximum of tryptophan, is believed to arise from inner filtering by the tyrosine residues in keratin.  相似文献   

7.
Steady-state and time-resolved fluorescence studies have been performed with human epidermal growth factor, a small globular protein having two adjacent tryptophan residues near its C-terminus. Based on the relatively red fluorescence and accessibility to solute quenchers, the two tryptophan residues are found to be exposed to solvent. Anisotropy decay measurements show the dominant depolarizing process to have a sub-nanosecond rotational correlation time indicating the existence of rapid segmental motion of the fluorescing tryptophan residues. From an analysis of the low-temperature excitation anisotropy spectrum of the protein (and in comparison with that of tryptophan, the peptide melittin, and the dipeptide trp-trp), it is concluded that homo-energy transfer and/or exciton interaction occurs between the adjacent tryptophan residues. A thermal transition in the structure of the protein, which is observed by circular dichroism measurements, is not sensed by the steady-state fluorescence of the protein. This result, in conjunction with the anisotropy decay results, indicates that the two tryptophan residues are in a highly flexible C-terminus segment, which is not an integral part of the three-dimensional structure of the protein. Fluorescence measurements with three site-directed mutants also show very little variation.  相似文献   

8.
本文用荧光、紫外差示及CD光谱研究果菠萝蛋白酶经甲醇、乙醇、乙二醇微扰后的构象与活力变化情况.酶的荧光强度随有机溶剂浓度增大而增强,表明Tyr、Trp微环境发生明显变化。232nm和285nm处出现紫外差吸收正峰。前峰与酶分于折叠的变化有关,而后峰与Tyr、Trp微环境的变化相关.甲醇、乙醇微扰后,天然酶的208nm和225nmCD双负峰逐渐加强,而乙二醇微扰后,225nm负峰加强。208nm负峰减弱并红移直至完全消失,说明酶分子完全伸展.  相似文献   

9.
Fluorescence quenching and time-resolved fluorescence studies have been carried out on the Trichosanthes dioica seed lectin (TDSL). The emission lambdamax of native TDSL, seen at 328nm, shifts to 343nm upon denaturation with 6M guanidinium chloride. Quenching titrations were performed with neutral (acrylamide and succinimide) and ionic (I(-) and Cs(+)) quenchers in order to probe the exposure and accessibility of tryptophan residues of the protein. Maximum quenching was observed with acrylamide, followed by succinimide, iodide and Cs(+). Dramatic increase in the extent of quenching and other quenching parameters by all the quenchers were observed upon denaturation of TDSL, suggesting that all the tryptophan residues in native TDSL are buried in the hydrophobic core of the protein. Increase in the extent of quenching upon denaturation of TDSL was maximum with I(-) and minimum with Cs(+), suggesting the presence of positively charged residue(s), near at least one tryptophan residue. Addition of saccharide ligands such as methyl-beta-d-galactopyranoside and lactose led to a small, but reproducible decrease in the fluorescence intensity of the lectin. The presence of lactose provided a partial protection against quenching by I(-), Cs(+) and succinimide, but not acrylamide. In time-resolved fluorescence measurements the fluorescence decay curves could be best fitted to biexponential patterns with lifetimes of 4.09 and 1.53ns for native lectin, 3.40 and 1.65ns for the lectin in presence of 0.1M lactose and 3.50 and 1.40ns for denatured lectin.  相似文献   

10.
Roach CA 《The Analyst》2011,136(13):2770-2774
The amino acid tryptophan displays emission solvatochromism, an emission maximum that shifts with solvent polarity, which is often used in protein studies to indicate local environment hydrophobicity. Use of tryptophan solvatochromism in time-resolved protein studies has traditionally been complicated due to the undescribed photokinetics that result in a characteristic multiexponential emission decay. For the first time, by application of the photokinetic matrix decomposition (PMD) multivariate curve resolution method to time-resolved emission decay (TRED) data, a distinguishment between ground state heterogeneous (GSH) and excited state reaction (ESR) type photokinetics of tryptophan in solution is made possible. It is found that molecular tryptophan displays two emission spectra that decay independently, suggesting GSH type photokinetics, one at 347 nm with a lifetime of 0.5 ns and one at 363 nm with a lifetime of 3.1 ns. When tryptophan is incorporated into a peptide, mastoparan X, the data similarly contain two emission spectra that decay independently, but are shifted in wavelength. Photobleaching experiments confirm that the PMD method is sensitive to tryptophan emission quenching, and therefore may be applied to determine the photokinetics of tryptophan that occur in proteins. Future applications of PMD analysis of tryptophan TRED data as a bioanalytical tool for further characterizing dynamic protein processes are discussed.  相似文献   

11.
Plant esterase extracted from wheat flour play key roles in the spectrophotometric detection of organophosphorus compounds (OPs) for food safety and human health. The purpose of the present study was to investigate the role of tryptophan residues in the activity and structure of plant esterase by chemical modification and fluorometric studies. Active site characterization of purified plant esterase showed the involvement of tryptophan in the catalytic activity. Only one was essential for the enzyme activity by the Tsou’s analysis. Substrate protection experiments further confirmed that the tryptophan residue was located at the substrate-binding site. Fluorescence quenching studies elucidated that the tryptophan residues were largely exposed to the solvent, and a smaller fraction of the surface tryptophan residues had electropositively charged amino acids around them. Experimental results obtained here are expected to promote the applications of plant esterase in OPs detection. Further confirmation of the existence of other critical residues and detailed explanation of their functions were also required for the elucidation of the mechanism involved in the detection of OPs.  相似文献   

12.
Abstract— Stern-Volmer quenching constants for β-trypsin at pH 3 were determined for fluorescence quenching by histidine, acrylamide, and nitrate ion. A modified Stern-Volmer plot (Lehrer, 1971) was employed to show that all of the fluorescent tryptophanyl residues of β-trypsin were equally susceptible to quenching by acrylamide at pH 3 when the enzyme was either in its native conformation or denatured in 6 M guanidine hydrochloride (GuHCl). Fluorescence lifetime measurements indicated that acrylamide quenched β-trypsin fluorescence by a purely collisional mechanism. Solvation of tryptophanyl residues of the protein was maximal at 2.5 M GuHCl, as monitored by fluorescence emission wavelength.
Investigations of the ultraviolet-induced inactivation of β-trypsin at 295 nm were performed in the presence of acrylamide at pH 3. The quantum yields for enzyme inactivation and indole destruction (determined using the PDAB reagent) were unchanged upon depopulation of the fluorescent state by 65 per cent, whether the enzyme was in its native conformation or denatured by 6 M GuHCl. It is concluded that the fluorescent state of tryptophanyl residues of β-trypsin is not involved in enzyme inactivation or tryptophan destruction.  相似文献   

13.
Abstract— Fluorescence lifetimes are reported for intact human lenses in vitro. Two spectral regions were investigated: The first was excited at 296nm and detected at 332 or 370nm and corresponds to emission from tryptophan residues in the lens proteins. The second spectral region was excited at 359 nm and detected at 435 nm and corresponds to non-tryptophan 'fluorogen' fluorescence. The latter displayed a constant lifetime, 3.8 ns, independent of the anatomical part of the lens excited. This value was compared with measured lifetimes for some model fluorogens. The tryptophan fluorescence lifetime (332 nm detection) was found to vary from 1.8 to 2.8 ns depending on the anatomical part of the lens excited.  相似文献   

14.
The environment of Trp57, introduced by the mutation of a tyrosine in the dynamic loop of porcine liver fructose-1,6-bisphosphatase (FBPase), was examined using time-resolved fluorescence and directed mutation. The Trp57 enzyme was studied previously by X-ray crystallography and steady-state fluorescence, the latter revealing an unexpected redshift in the wavelength of maximum fluorescence emission for the R-state conformer. The redshift was attributed to the negative charge of Asp127 in contact with the indole side chain of Trp57. Time-resolved fluorescence experiments here reveal an indole side chain less solvent exposed and more rigid in the R-state, than in the T-state of the enzyme, consistent with X-ray crystal structures. Replacement of Asp127 with an asparagine causes a 6 nm blueshift in the wavelength of maximum fluorescence emission for the R-state conformer, with little effect on the emission maximum of the T-state enzyme. The data here support the direct correspondence between X-ray crystal structures of FBPase and conformational states of the enzyme in solution, and provide a clear example of the influence of microenvironment on the fluorescence properties of tryptophan.  相似文献   

15.
A dilute aqueous solution of flavocytochrome b2 when exposed to inactivating doses of UV radiation at 280 nm underwent reversible loss in activity both under aerated and deaerated conditions. The active site as well as the substrate binding sites were found to be modified in the irradiated enzyme. Irradiation of the enzyme in the UV-C range resulted in partial unfolding of the polypeptide framework. Destruction and/or modification of both tryptophan and tyrosine residues as well as heme moieties took place. Preliminary laser flash photolysis studies suggest that the initial photo-ionization takes place with tryptophan and tyrosine residues with the formation of excited states and radicals, and then rapid transfer of electrons takes place to histidyl and cystinyl sites which might have eventually been altered in the process.  相似文献   

16.
Flash photolysis and inactivation of aqueous lysozyme   总被引:1,自引:0,他引:1  
Abstract— –Flash photolysis of aqueous lysozyme has shown that the initial photochemical products are photo-oxidized tryptophan residues (Λmax= 500 nm), hydrated electrons (Λmax= 720 nm), and the cystine residue electron adduct (Λmax= 420 nm). Comparisons with mixtures of the chromophoric amino acids show that 1 to 2 tryptophan residues provide electrons at a quantum yield of 0.018 (25 per cent). Part of the ejected electrons are captured by cystine residues via a short-range, intramolecular process with essentially unit efficiency. The remainder become hydrated and back react with oxidized tryptophan residues before 10-4sec. The cystine residue electron adduct decays with 2 msec halftime (25°C) and 1.5 kcal/mole activation energy. The surviving oxidized tryptophan residues decay with a comparable time constant in a hydroxyl ion catalyzed process. In acid solutions the oxidized tryptophan residue and long-lived H atom adduct are observed (Λmax= 380 nm). The quantum yield of lysozyme inactivation induced by xenon flash irradiation above 250 nm is 0.023 (20 per cent), which is not sensitive to oxygen or pH. Comparison to the primary photochemical reactions indicates that electron ejection from the essential tryptophan residues inactivates the enzyme, irrespective of the electron trap and subsequent reactions. On the basis of the structure and supporting information it is proposed that the tryptophan residues of the active site are involved. Direct disruption of cystine residues does not contribute more than 10 per cent to the inactivation quantum yield in this wavelength region. Lysozyme inactivation may differ from other enzymes because the chromophores include essential residues located in the active center.  相似文献   

17.
This work studies the behaviour of partially inactivated lysozyme formed by the effect of singlet oxygen, which was obtained through the irradiation of the native enzyme solution with polychromatic visible light using Methylene Blue as a sensitizer. The polyacrylamide gel analysis of the partially inactivated lysozyme solution shows the presence of different protein fractions. One of them, which corresponds to 53% of the original enzyme, has the same migration as the native enzyme. The others are a mixture of fractions (47%) that show slower migration to the cathode. When this experiment is carried out in the presence of sodium dodecyl sulfate, only one fraction is obtained, which rules out the presence of covalently aggregated forms of lysozyme. The partially inactivated lysozyme has lost 74% of the fluorescence emission of the tryptophan (Trp) residues. By using the anionic quencher iodide, it is determined that 45 and 36% of the fluorescence emission arising from the native and partially inactivated enzyme, respectively, are due to Trp residues exposed to the solvent. Michaelis-Menten constants (K(in)) of 0.296 and 0.511 (mg/ml) and maximum initial rates (Vmax) of 0.295 and 0.190 (mg/ml min) are determined for the native and the partially inactivated enzyme solutions, respectively. The same inactivation profile is found when the denaturing effect of increasing urea concentration on both the native and partially inactivated lysozyme is studied. It is postulated that the partially inactivated lysozyme solution is composed of one protein fraction with enzymatic activity similar to that of the native enzyme and also of a mixture of fractions (47% of the total enzyme) with very low activity and characterized by a high tryptophan photo-oxidation.  相似文献   

18.
The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation. For the direct excitation of ANS at 375 nm the binding constant was 4.7 microM(-1) and for UV excitation at 295 nm was 3.2 microM(-1). In the later case, not only ANS but also tryptophan (Trp) residues of LCAT is being excited. Fluorescence spectra and intensity decays show an efficient energy transfer from tryptophan residues to ANS. The apparent distance from Trp donor to ANS acceptor, estimated from the changes in donor lifetime was about 3 nm and depends on the ANS concentration. Steady-state and time-resolved fluorescence emission and anisotropies have been characterized. The lifetime of ANS bound to LCAT was above 16 ns which is characteristic for it being in a hydrophobic environment. The ANS labeled LCAT fluorescence anisotropy decay revealed the correlation time of 42 ns with a weak residual motion of 2.8 ns. These characteristics of ANS labeled LCAT fluorescence show that ANS is an excellent probe to study conformational changes of LCAT protein and its interactions with other macromolecules.  相似文献   

19.
Abstract— Urocanase from Pseudomonas putida can be photoactivated by UV radiation. Because of the action spectrum peak at 280 nm, tryptophan has been implicated in the photoactivation by energy transfer. In these studies, tryptophan was determined, the exposure and environment of tryptophanyl residues were studied with collisional quenchers, and the involvement of tryptophanyl residues in the photoactivation of urocanase was investigated. There are sixteen tryptophanyl residues per urocanase molecule as measured by two methods. Fluorescence quenching with acrylamide, cesium, and iodide was used to describe the accessibility and environment of urocanase tryptophanyl residues. Quenching constants indicated there is little difference in the accessibility of tryptophanyl residues between active and inactive enzyme. Tryptophanyl residues of native enzyme were most accessible to acrylamide ( f a, = 0.6–0.7), less accessible to iodide ( f a= 0.4), and not accessible to cesium ion, suggesting that surface residues were in regions of positive charge. Stern-Volmer plots indicated a heterogeneous population of tryptophanyl residues with different accessibilities. A competitive inhibitor, imidazolepropionate, quenched fluorescence; the quenching was used to determine the dissociation constant for the enzyme-inhibitor complex ( K d= 0.20 mM). Kinetic data showed K i= 0.25 mM. Mixed quencher experiments indicated that the tryptophanyl residues quenched by imidazolepropionate were more accessible to acrylamide and less accessible to iodide. These studies suggest that the residues involved in putative energy transfer during photoactivation are not fully exposed.  相似文献   

20.
Fluorescence spectroscopy has the potential to improve the in vivo detection of intraepithelial neoplasias; however, the presence of inflammation can sometimes result in misclassifications. Inflammation is a common and important pathologic condition of epithelial tissues that can exist alone or in combination with neoplasia. It has not only been associated with the presence of cancer but also with the initiation of cancer by damage induced due to the oxidative activity of inflammatory cells. Microscopic examination of cervical biopsies has shown increased numbers of polymorphonuclear and mononuclear leukocytes in inflamed tissues mostly confined to the stroma. The purpose of this study was to characterize the fluorescence properties of human polymorpho- and mononuclear leukocytes and compare their fluorescence to that of cervical cancer cells. Human neutrophils were purified from peripheral blood and their fluorescence characterized over an excitation range of 250-550 nm. There are four notable excitation emission maxima: the tryptophan peak at 290 nm excitation, 330 nm emission; the NAD(P)H peak at 350 nm excitation, 450 nm emission, the FAD peak at 450 nm excitation, 530 nm emission and an unidentified peak at 500 nm excitation, 530 nm emission. Treatment of these peripheral blood neutrophils with 40 nM phorbol myristate acetate or with the chemotactic peptide formyl-Met-Leu Phe (1 M) demonstrated a significant increase in NAD(P)H fluorescence. Isolated mononuclear cells have similar emission peaks for tryptophan and NAD(P)H and a small broad peak at 450 nm excitation, 530 nm emission suggestive of FAD. Comparison of the fluorescence from leukocytes to epithelial cancer cell fluorescence has demonstrated the presence of these fluorophores in different quantities per cell. The most notable difference is the high level of tryptophan in cervical epithelial cancer cells, thus offering the potential for discrimination of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号