首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Two compounds, {[Sm(H2O)5]2(TeMo6O24)}·6H2O (1) and {[Eu(H2O)7]2 (TeMo6O24)}·5H2O (2) have been synthesized by hydrothermal reactions and characterized by elemental analyses, IR spectra, thermal stability analyses, X-ray powder diffraction, and single-crystal X-ray diffraction. Compound 1 represents the first example of a 2D layer architecture constructed from Anderson-type polyoxoanions [TeMo6O24]6− and rare-earth ions Ln3+. Compound 2 displays a 1D chain structure built up of alternating Anderson-type polyoxoanions [TeMo6O24]6− and rare-earth ions Eu3+ along the c-axis. Luminescence measurement of 2 exhibits typical red fluorescent emission of the Eu3+ ion at room temperature. Furthermore, the emission is intense enough to be observed macroscopically under UV irradiation (365 nm).  相似文献   

2.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

3.
Three polyoxometalate-based metal–organic complexes [Co2(H2O)6(TeMo6O24)](3-H2dpyb)·2H2O (1), [M2(4-Hdpyb)2(H2O)6(TeMo6O24)]·6H2O [M = Co (2), Zn (3); 3-dpyb = N,N′-bis(3-pyridinecarboxamide)-1,4-butane, 4-dpyb = N,N′-bis(4-pyridinecarboxamide)-1,4-butane] have been hydrothermally synthesized and characterized by elemental analysis, IR, TG, powder diffraction and single-crystal X-ray diffraction analysis. The structure of complex 1 consists of 1D [Co2(H2O)6(TeMo6O24)] inorganic chains, which are joined together by the 3-dpyb ligands through weak hydrogen bonds to generate a 2D supramolecular network. Complexes 2 and 3 are isostructural; each [TeMo6O24]6? (TeMo6) polyoxoanion chelates either two cobalt or two zinc atoms to generate the discrete complexes [Co2(4-Hdpyb)2(H2O)6(TeMo6O24)] and [Zn2(4-Hdpyb)2(H2O)6(TeMo6O24)], respectively. The electrochemical properties, electrocatalytic and photocatalytic activities of the complexes have been investigated.  相似文献   

4.
Combination of in-situ generated monocopperII-substituted Keggin polyoxoanions with copperII-organoamine complexes under hydrothermal conditions results in seven inorganic-organic composite polyoxotungstates [Cu(en)2(H2O)]2{[Cu(en)2][α-PCuW11O39Cl]}·3H2O (1), {[Cu(en)2(H2O)][Cu(en)2]2[α-PCuW11O39Cl]}·6H2O (2), {[Cu(en)2(H2O)]2[Cu(en)2][α-XCuW11O39]}·5H2O (3/4, X=SiIV/GeIV), {[Cu(deta)(H2O)2]2[Cu(deta)(H2O)][α-XCuW11O39]}·5H2O (5/6, X=GeIV/SiIV) and [Cu(dap)2]2{[Cu(dap)2]2[Cu(dap)2][α-PCuW11O39]2} (7) (en=ethylenediamine, dap=1,2-diaminopropane and deta=diethylenetriamine). 1 is an isolated structure whereas 2 is a 1-D chain structure, but both contain [α-PCuW11O39Cl]6− polyoxoanions. 3-6 contain the 1-D linear chains made up of [α-XCuW11O39]6− polyoxoanions in the pattern of -A-A-A- (A=[α-XCuW11O39]6−), while 7 demonstrates the first 1-D zigzag chain constructed from [α-PCuW11O39]210− polyoxoanions via [Cu(en)2]2+ bridges in the pattern of -A-B-A-B- (A=[α-PCuW11O39]210−, B=[Cu(en)2]2+). The successful syntheses of 1-7 can provide some experimental evidences that di-/tri-/hexa-vacant polyoxoanions can be transformed into mono-vacant Keggin polyoxoanions under hydrothermal conditions.  相似文献   

5.
The hydrolysis of 2-phenylethyl β-d-glucopyranoside (3) was found to be partially inhibited by feeding with 2-phenyl-N-glucosyl-acetamidiumbromide (8), a β-glucosidase inhibitor, resulting in a decrease in the diurnal emission of 2-phenylethanol (2) from Rosa damascena Mill. flowers. Detection of [1,1,2,2′,3′,4′,5′,6′-2H8]-2 and [1,2,2′,3′,4′,5′,6′-2H7]-2 from R. ‘Hoh-Jun’ flowers fed with [1,1,2,2′,3′,4′,5′,6′-2H8]-3 suggested that β-glucosidase, alcohol dehydrogenase, and reductase might be involved in scent emission. Comprehensive GC-SIM analyses revealed that [1,2,2,2′,3′,4′,5′,6′-2H8]-2 and [1,2,2,2′,3′,4′,5′,6′-2H8]-3 must be biosynthesized from [1,2,2,2′,3′,4′,5′6′-2H8] l-phenylalanine ([2H8]-1) with a retention of the deuterium atom at α-position of [2H8]-1.  相似文献   

6.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

7.
Heats of formation have been derived from G3(MP2)//B3LYP and G3MP2B3(+) atomization energies for tert-butyl radical (6R), cubyl radical, bicyclooctyl radical (1R), and tricyclo[3.3.n.03,7]alk-3(7)-yl (n=0-3, 2R-5R) radicals, and their respective anions (1A-6A) and hydrocarbons (1H-6H). The electron affinity (EA) of 6R is estimated at 1.5±2 kcal/mol and tert-butyl anion (6A) is likely to be bound. In the homologous series 2R-5R the EAs range from 3.4±2 to 13.5±2 kcal/mol. The computed enthalpies of the acidities of the tricyclic hydrocarbons 1H-5H are in the range 407-411 kcal/mol. Their C-H bond dissociation energies (BDEs) are in the range 97-110 kcal/mol. The increase of the BDEs in the homologous series 2H-5H and the increase of EAs of 2A-5A is attributed to the enhanced pyramidalization induced in radicals 2R-5R by the shortening of the methylene chain connecting carbons C3 and C7.  相似文献   

8.
Two different Anderson-type polyoxometalates-directed metal–organic complexes with different structures: {H2[K(H2O)5]2[Cu(pzca)(H2O)3]2(TeMo6O24)} (1) and {H[Cu(pzca)(H2O)2]2[AlMo6(OH)6O18]}·17H2O (2) (Hpzca = 2-pyrazine carboxylic acid) have been synthesized and structurally characterized by single crystal X-ray diffraction analyses, thermogravimetric analyses, IR spectra and powder X-ray diffraction analyses. Compound 1 is a 0D architecture, in which the A-type Anderson anion [TeMo6O24]6? (TeMo6) is modified by two [Cu(pzca)(H2O)3]+ cations and two [K(H2O)5]+ cations. The adjacent {[K(H2O)5]2[Cu(pzca)(H2O)3]2(TeMo6O24)} clusters are connected by hydrogen-bonding interactions, resulting in a 3D supramolecular framework. When B-type Anderson anion [AlMo6(OH)6O18]3? (AlMo6) was used in compound 2, a 2D wave-like network was obtained, in which the adjacent 1D [Cu(pzca)] n n+ chains are linked by AlMo6 anions with two terminal oxygen atoms. The types of Anderson anions play an important role in tuning the structures of the title compounds. In addition, the electrocatalytic activities of title compounds and photocatalytic activities of compound 1 have been studied.  相似文献   

9.
The reaction of 2,6-dimethoxypyridine-3-carboxylic acid (DMPH) with different precursors [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H4SiMe3)(η5-C5H5)Cl2], [Ti(η5-C5Me5)Cl3], SnMe3Cl and GatBu3 yielded the complexes [Ti(η5-C5H5)2(DMP-κO)2] (1), [Ti(η5-C5H4Me)2(DMP-κO)2] (2), [Ti(η5-C5H4SiMe3)(η5-C5H5)(DMP-κO)2] (3), [Ti(η5-C5Me5)(DMP-κ2O,O′)3] (4), [SnMe3(μ-DMP-κOO′)] (5), and [GatBu2(μ-DMP-κOO′)]2 (6). 1-6 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2, 3, 5 and 6 have been determined by X-ray diffraction studies. The cytotoxic activity of 1-6 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562, human malignant melanoma Fem-x and human breast carcinoma MDA-MB-361. The results of this study show a higher cytotoxicity of the tin(IV) and gallium(III) derivatives in comparison to their titanium(IV) counterparts. Furthermore, the different titanium compounds showed differences in their cytotoxicities with a higher activity of complex 4 (mono-(cyclopentadienyl) derivative) compared to that of 1-3 (bis-(cyclopentadienyl) complexes). A qualitative UV-vis study of the interactions of these complexes with DNA has also been carried out.  相似文献   

10.
A series of mono-cationic dinuclear half sandwich ruthenium, rhodium and iridium metal complexes have been synthesized using ((pyridin-2-yl)methylimino)nicotinamide (L1) and ((picolinamido)phenyl)picolinamide (L2) ligands: [(η6-arene)2Ru2(μ-L1)Cl3]+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(μ-L1)Cl3]+ (M = Rh, 4; Ir, 5), and [(η6-arene)2Ru2(μ-L2)(μ-Cl)]+ (arene = C6H6, 6; p-iPrC6H4Me, 7; C6Me6, 8), [(η5-C5Me5)2M2(μ-L2)Cl2]+ (M = Rh, 9; Ir, 10). All the complexes have been isolated as their hexafluorophosphate salts and fully characterized by use of a combination of NMR and IR spectroscopy. The solid state structure of three representatives 4, 6 and 9 has been determined by X-ray crystallographic studies. Interestingly, in the molecular structure of 4, the first metal is bonded to two nitrogen atoms whereas the second metal center is coordinated to only one nitrogen atom with two terminal chloride ligands. Fascinatingly in the case of the complexes with the symmetrical ligand L2, both ruthenium centers having η6-arene groups are bonded to nitrogen atoms with a bridging chloride atom between the two metal centers, whereas the metals with η5-Cp∗ groups are bonded to the ligand N,O and N,N fashion.  相似文献   

11.
Cluster opening of [2-Cp-9-tBuNH-closo-2,1,7,9-FeC3B8H10] (1) , followed by oxidation, generates complexes [2-Cp-8-tBuNH-closo-2,1,8,10-FeC3B8H10] (2), [2-Cp-4-tBuNH-closo-2,1,4,12-FeC3B8H10] (3), [2-Cp-1-tBuNH-closo-2,1,7,10-FeC3B8H10] (4), and [1-Cp-10-tBuNH-closo-1,2,3,10-FeC3B7H9] (5). Another variation of the syntheses led to compounds [2-Cp-closo-2,1,8,10-FeC3B8H11] (6), [4-Cp-1-tBuNH-closo-4,1,6,8,-FeC3B9H11] (7) and to two isomeric, not yet fully characterized, 13-vertex compounds of general nido structure [tBuNH-Cp-FeC3B9H12] (8 and 9).  相似文献   

12.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

13.
Four new inorganic–organic hybrid frameworks [Mn(L)(H2O)2]n (1), {[Co(L)(H2O)3]·2H2O·CH3OH}n (2), {[Zn(L)(H2O)]·H2O}n (3) and [Cd(HL)2]n (4) [H2L = 4-(isonicotinamido)phthalic acid] have been synthesized and characterized by single-crystal X-ray diffraction analysis. Complex 1 has three-dimensional (3D) structure and topology related to SrAl2 (sra) with Schläfli symbol of (42·63·8). And 2 displays (3,3)-connected two-dimensional (2D) network with (4,82) topology, while 3 exhibits a uninodal (3,3)-connected (6,3) 2D network, which is further linked by N–H?O hydrogen bonding interactions to give 3D structure with hms topology and Schläfli symbol of (63)(69·8). Complex 4 with partial deprotonated HL ligands also has a 2D network structure. In addition, the magnetic property of 1, nonlinear optical property of 3 and photoluminescence of 3 and 4 were investigated.  相似文献   

14.
The complexes of the type (ArCH2)2SnO were catalytic-oxygenated by Ag+ and yielded mixed-ligand organotin(IV) complexes (ArCH2)(2-C5H4NCO2)2(ArCOO)tin(IV) (Ar = C6H5 (1), 2-ClC6H4 (2), 2-CNC6H4 (3), 4-ClC6H4 (4), 4-CNC6H4 (5), 2-FC6H4 (6)). The complexes 1-6 are characterized by elemental analyses, IR and NMR (1H, 13C, 119Sn) spectroscopies. Single X-ray crystal structure analysis has been determined, which reveals that the center tin atom of complex 2 is seven-coordinated geometry.  相似文献   

15.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

16.
In this article, ten new coordination frameworks, namely, [Ni(H2O)6]·(L3) (1), [Zn(L3)(H2O)3] (2), [Cd(L3)(H2O)3]·5.25H2O (3), [Ag(L1)(H2O)]·0.5(L3) (4), [Ni(L3)(L1)] (5), [Zn(L3)(L1)0.5]·H2O (6), [Cd(L3)(L1)0.5(H2O)] (7), [CoCl(L3)0.5(L1)0.5] (8), [ZnCl(L3)0.5(L2)0.5] (9), and [CoCl(L3)0.5(L2)0.5] (10), where L1 = 1,1′-(1,4)-butanediyl)bis(imidazole), L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole) and H2L3 = 3,3′-(p-xylylenediamino)bis(benzoic acid), have been synthesized by varying the metal centers and nitrogen-containing secondary ligands. These structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses and IR spectra. In 1, the L3 anion is not coordinated to the Ni(II) center as a free ligand. The Ni(II) ion is coordinated by water molecules to form the cationic [Ni(H2O)6]2+ complex. The hydrogen bonds between L3 anions and [Ni(H2O)6]2+ cations result in a three-dimensional (3D) supramolecular structure of 1. In compounds 2 and 3, the metal centers are linked by the organic L3 anions to generate 1D infinite chain structures, respectively. The hydrogen bonds between carboxylate oxygen atoms and water molecules lead the structures of 2 and 3 to form 3D supramolecular structures. In 4, the L3 anion is not coordinated to the Ag(I) center, while the L1 ligands bridge adjacent Ag(I) centers to give 1D Ag-L1 chains. The hydrogen bonds among neighboring L3 anions form infinite 2D honeycomb-like layers, in the middle of which there exist large windows. Then, 1D Ag-L1 chains thread in the large windows of the 2D layer network, giving a 3D polythreaded structure. Considering the hydrogen bonds between the water molecules and L3 anions, the structure is further linked into a 3D supramolecular structure. Compounds 5 and 7 were synthesized through their parent compounds 1 and 3, respectively, while 6 and 9 were obtained by their parent compound 2. In 5, the L3 anions and L1 ligands connect the Ni(II) atoms to give a 3D 3-fold interpenetrating dimondoid topology. Compound 6 exhibits a 3D three-fold interpenetrating α-Po network structure formed by L1 ligands connecting Zn-L3 sheets, while compound 7 shows a 2D (4,4) network topology with the L1 ligands connecting the Cd-L3 double chains. In compound 8, the L1 ligands linked Co-L3 chains into a 2D layer structure. Two mutual 2D layers interpenetrated in an inclined mode to generate a unique 3D architecture of 8. Compounds 9 and 10 display the same 2D layer structures with (4,4) network topologies. The effects of the N-containing ligands and the metal ions on the structures of the complexes 1-10 were discussed. In addition, the luminescent properties of compounds 2-4, 6, 7 and 9 were also investigated.  相似文献   

17.
With BIMB ligand, we have successfully obtained and characterized three novel entangled inorganic-organic hybrid compounds by choosing different metal ions, that is, [Ni(BIMB)2(γ-Mo8O26)0.5]·3H2O (1), [Zn(BIMB)2(γ-Mo8O26)0.5] (2), and [Cu3(BIMB)4(H2O)(δ-Mo8O26)Cl2]·3H2O (3) (where BIMB=1,4-bis(1-imidazolyl)benzene). Compound 1 is a 2-fold interpenetration 4-connected 3D framework with the short Schläfli symbol of (4×64×8)2(42×62×82), in which octamolybdate anion shows γ-isomer; 2 exhibits a (5,6)-connected 3D self-penetrating topological motif with the short Schläfli symbol of (4×57×62)2(42×511×72), and 3 shows a (4,6)-connected self-penetrating 3D framework with the short Schläfli symbol of (42·52·6·7) (44·5·69·8) (54·62) whose octamolybdate has δ-isomer. In addition, the optical band gaps of these three compounds have been measured, which are 2.98 eV for 1, 3.42 eV for 2, and 2.88 eV for 3. Moreover, 2 has photoluminescent property, which can be attributed to ligand-to-metal charge-transfer (LMCT) band.  相似文献   

18.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

19.
20.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号