首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
The hybrid 2D compound [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1), has been investigated due to its interesting magnetic and catalytic properties. Compound (1) acts as an efficient catalyst in the epoxidation of cyclohexene and styrene. The chemoselectivity towards the epoxidation of cyclohexene is notoriously higher than the one observed towards styrene. The bulk antiferromagnetic behaviour of [{Cu(bpy)}2(VO)3(PO4)2(HPO4)2]·2H2O (1) can be well described with a pentanuclear model, using five J values. Both antiferromagnetic and ferromagnetic interactions mediated by phosphate bridges are found to be present in this hybrid copper(II)–vanadium(IV) material.  相似文献   

2.
Five organic-inorganic hybrid gallium oxalate-phosphates, [Ga2(PO4)2(H2O)(C2O4)0.5](C3N2H12)0.5(H2O) (1), [Ga2(PO4)2(C2O4)0.5](C2N2H10)0.5(H2O) (2), [Ga2(PO4)2(C2O4)0.5](C3N2H12)0.5 (3), [Ga2(PO4)2(H2PO4)0.5(C2O4)0.5](C4N3H16)0.5 (H2O)1.5 (4) and [Ga2.5(PO4)2.5(H2O)1.5(C2O4)0.5](C4N3H15)0.5 (5), have been synthesized by using 1,3-diaminopropane, ethylenediamine and diethylene triamine as structure-directing agents under hydrothermal condition. The structures of 1-5 are based on Ga4(PO4)4(C2O4) building unit made up from Ga2O8(C2O4) oxalate-bridging dimer and alternating PO4 and GaO4 tetrahedral units. Compound 1 is layered structure where the building units link together in the same orientation. Corner sharing of these similar layers result in three-dimensional (3-D) structure 2. However, in compound 3, the building units arrange in a wave-like way to generate two types of eight member ring (8MR) channels. Both 4 and 5 contain the layers where the building units have an opposite orientation. Those layers are linked by H2PO4 group and Ga(PO4)(H2O)3 cluster, respectively, to form 3-D frameworks with 12MR large pore channels. Compounds 2-5 exhibit intersecting 3-D channels where the protoned amines are located.  相似文献   

3.
Consecutive synthesis methodologies for the preparation of carbosilanes (Ph)(Me)Si((CH2)3B(OH)2)2 (2), Si(C6H4-4-SiMe2((CH2)3B(OH)2))4 (5), (Ph)(Me)Si((CH2)3OH)2 (3), and Si(C6H4-4-SiMe3−n((CH2)3OH)n)4 (6a, n = 1; 6b, n = 2; 6c, n = 3) are reported. Boronic acids 2 and 5 are accessible by treatment of (Ph)(Me)Si(CH2CHCH2)2 (1) or Si(C6H4-4-SiMe2(CH2CHCH2))4 (4a) with HBBr2·SMe2 followed by addition of water, while 3 and 6 are available by the hydroboration of 1 or Si(C6H4-4-SiMe3−n(CH2CHCH2)n)4 (4a, n = 1; 4b, n = 2; 4c, n = 3) with H3B·SMe2 and subsequent oxidation with H2O2.The single molecular structure of 6a in the solid state is reported. Representative is that 6a crystallized in the chiral non-centrosymmetric space group P212121 forming 2D layers due to intermolecular hydrogen bond formation of the HO functionalities along the crystallographic a and c axes.  相似文献   

4.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

5.
Reactions of Ln2O3 and trans-4-pyridylacrylic acid (4-Hpya) in EtOH/H2O or MeOH/H2O produced two new lanthanide/4-pya complexes [Ln(4-pya)3(H2O)2]2 (1: Ln = Eu; 2: Ln = La) in low yields. However, reactions of LnCl3 · 6H2O with 4-Hpya/aqueous ammonia in EtOH/H2O or MeOH/H2O gave rise to 1 or 2 in higher yields. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and X-ray analysis. Compounds 1 · 2EtOH · 2H2O and 2 · 2MeOH · 2H2O were confirmed to possess one-dimensional polymeric chain structures. In the structure of 1, each Eu(III) adopts a monocapped square-antiprism coordination geometry and each dimer [Eu(4-pya)3(H2O)2]2 within the chain is interconnected by two pairs of different bridging 4-pya ligands. On the other hand, each La(III) of 2 takes a bicapped square-antiprism coordination geometry and each dimer [La(4-pya)3(H2O)2]2 within the chain is linked by two pairs of tridentate bridging 4-pya ligands. The luminescent properties of 1 and 2 in the solid state were investigated.  相似文献   

6.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

7.
A new layered indium phosphate [Co(en)3][In3(H2PO4)6(HPO4)3]·H2O (1) has been synthesized solvothermally by using a racemic mix of chiral metal complex Co(en)3Cl3 as a template. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, NMR and TG analyses. The inorganic layer is built up by alternation of In-centred octahedra (InO6) and P-centered tetrahedra (PO3(OH), PO2(OH)2, PO2(=O)(OH) and PO(=O)(OH)2) forming a 4.12-net. The metal complex cations locate in the interlayer region and interact with the host network through H-bonds. It is the first indium phosphate compound templated by a transition-metal complex and is isostructural with GaPO-CJ14. Crystal data: 1, monoclinic, space group P21/m (No. 11), a=9.1700(18) Å, b=22.6923(5) Å, c=9.9116(2) Å, β=107.87(3)°, Z=4, R1[I>2σ(I)]=0.0287 and wR2(all data)=0.0939.  相似文献   

8.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

9.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

10.
A three-dimensional (3D) cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2 (1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO6 and PO4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs.  相似文献   

11.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

12.
Three mixed-metal single-molecule magnets containing [Mn8Fe4O12]16+ cores are synthesized and characterized. The reaction of FeCl2·4H2O with KMnO4 and RCOOH (R = CH2Cl, CH2Br) in H2O gives [Mn8Fe4O12(O2CR)16(H2O)4] (R = CH2Cl (1), CH2Br (2)) in yields of 43% and 40%, respectively. Treatment of complex 1 with an excess of CHCl2COOH in CH2Cl2 gives [Mn8Fe4O12(O2CCHCl2)16(H2O)4]·CH2Cl2·10H2O (3·CH2Cl2·10H2O) in a yield of 83%. The X-ray structure analysis reveals that all three complexes consist of a trapped-valence dodecanuclear core comprising 4MnIII, 4FeIII, and 4MnIV ions. DC magnetic susceptibility and magnetization measurements indicate that all three complexes exhibit intramolecular antiferromagnetic interaction, resulting in an S = 4 ground state. In addition, frequency-dependent out-of-phase AC magnetic susceptibility signals at low temperature for complexes 1, 2, and 3 are indicative of their single-molecule magnetism behavior.  相似文献   

13.
Two new isomorphous tetranuclear complexes [Cu4L2(4,4′-bipy)2]·(ClO4)4·2CH3CN·2H2O (1) and [Zn4L2(4,4′-bipy)2]·(ClO4)3·CH3O·4H2O (2) have been obtained and fully characterized (where bipy = bipyridine, H2L = macrocycle is the [2+2] condensation product of 2,6-diformyl-4-fluoro-phenol and 1,4-diaminobutane). They exhibit wheel-like configuration in which two 4,4′-bipy molecules connect two dinuclear [M2L]2+ units. The interactions of the complexes with calf thymus DNA were studied by UV-Vis and CD spectroscopic techniques. The binding constants of 1 and 2 are 2.27 × 106 and 3.89 × 105 M−1, respectively. The magnetic measurement of 1 reveals that there are strong antiferromagnetic coupling (J = -272.6 cm−1) between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction (j′ = 41.7) between the Cu(II) ions in two adjacent macrocyclic units. Furthermore, the cyclic voltammogram of 1 shows that it undergoes two quasi-reversible processes with the half wave potentials -0.232 and -0.606 V, respectively.  相似文献   

14.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

15.
The solvent-mediated crystal-to-crystal transformation was observed from yellow crystal of NiCl2(CH3OH)2(1,4-dioxane)0.5 (1) to green crystal of [NiCl2(H2O)2(1,4-dioxane)](1,4-dioxane) (2) under high humidity or adding of H2O in CH3OH/1,4-dioxane solution. The μ-Cl2 bridge in 1 replaced by 1,4-dioxane bridge in 2. In 1, the chlorine-bridged linear chains of NiCl2(CH3OH)2 and 1,4-dioxane molecules stack along the b- and c-axis alternatively with hydrogen bonds intrachain, interchain, between chain and solvent. These hydrogen bonds and dipolar interaction between ferromagnetic coupling chlorine-bridged chains result in long-range ferromagnetic ordering at 3.1 K and a strong frequency dependence of the ac-susceptibilities associated to domain structures with very large shape anisotropy was observed below 3.1 K. In 2, layers of 1,4-dioxane-bridged linear chains of NiCl2(H2O)2(1,4-dioxane) are intercalated by layer of 1,4-dioxane molecules with hydrogen bonds between chain and solvent. Compound 2 is paramagnet to 2 K.  相似文献   

16.
Two new cobalt phosphites, (H3NC6H4NH3)Co(HPO3)2 (1) and (NH4)2Co2(HPO3)3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO4 tetrahedra and HPO3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co2O9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction.  相似文献   

17.
The reaction between BaI2 · 2H2O and NaHFIP [HFIP = OCH(CF3)2] in a 1:1 stoichiometry gave the heterometallic compound NaBaI2(HFIP)(H2O)(THF)0.5 (1). Attempts to recrystallize 1 in the presence of N- or O-donor ligands lead to redistribution reactions. Barium iodide adducts such as BaI2(DME)3 (2), trans-BaI2(DME)(triglyme) (3) and cis-BaI2(DME)(tetraglyme) (4) were isolated with DME as solvent. A similar behavior was observed for the reaction between BaI2 · 2H2O and NaTFA (TFA = O2CCF3) in a 1:1 stoichiometry in THF, and [Ba(tetraglyme)2]I2 · C7H8 (6) was isolated in the presence of excess tetraglyme. All compounds have been characterized by elemental analysis, IR and 1H NMR as well as single crystal X-ray studies for 3, 4 and 6. Compounds 3 and 4 are covalent adducts with eight- and nine-coordinate barium, respectively. Compound 6 is an ionic compound where two tetraglyme ligands wrap the 10-coordinate barium cation in a helical fashion. The presence of DME actually allows the coordination number of barium in the mixed-ligand adducts 3 and 4 to be tuned. The average Ba–O bond lengths (2.80 for 3 to 2.87 Å for 6) reflect the coordination number of the metal. The same observation is valid for the average Ba–I bond distance, 3.442 for 3 vs. 3.536 Å for 4.  相似文献   

18.
The exchange of the Li+(1), Na+(2) and K+(3) alkaline cations in the layered HNi(PO4)·H2O was carried out starting from a methanolic solution containing the Li(OH)·H2O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C6H13NH2)0.75HNiPO4·H2O phases for (2) and (3). The compounds are stable until, approximately, 280 °C for (1) and 400 °C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO4)3− oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d8, cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and , respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li+ cation in the lamellar HNi(PO4)·H2O phase is the minor rapid reaction, whereas the exchange of the Na+ and K+ cations needs the presence of the intermediate (C6H13NH2)0.75HNiPO4·H2O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5 μm. The Li+ exchanged compound exhibits small ionic conductivity (Ω cm−1 is in the 10−8-10−9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5 K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures.  相似文献   

19.
Synthesis, thermal behaviour and crystal structures of [Et3NH]4[V10O26(OH)2] (1) and [Me2HN(CH2)2NHMe2]3[V10O28] · 4H2O (2) are reported. In the crystal lattice of 1, the anions form discrete dimers via O–H···O hydrogen bonds and the cations are connected to the respective anions through N–H···O hydrogen bonds. On the other hand, 2 forms a complex three-dimensional network due to involvement of the cations, the anions and the lattice water in O–H···O and N–H···O hydrogen bonds.  相似文献   

20.
Using biprotonated dabco (1,4-diazabicyclo[2.2.2]octane) or pipz (piperazine) as counter cations, mixed-ligand fluoromanganates(III) with dimeric anions could be prepared from hydrofluoric acid solutions. The crystal structures were determined by X-ray diffraction on single crystals: dabcoH2[Mn2F8(H2O)2]·2H2O (1), space group P21, Z = 2, a = 6.944(1), b = 14.689(3), c = 7.307(1) Å, β = 93.75(3)°, R1 = 0.0240; pipzH2[Mn2F8(H2O)2]·2H2O (2), space group , Z = 2, a = 6.977(1), b = 8.760(2), c = 12.584(3) Å, α = 83.79(3), β = 74.25(3), γ = 71.20(3)°, R1 = 0.0451; (dabcoH2)2[Mn2F8(H2PO4)2] (3), space group P21/n, Z = 4, a = 9.3447(4), b = 12.5208(4), c = 9.7591(6) Å, β = 94.392(8)°, R1 = 0.0280. All three compounds show dimeric anions formed by [MnF5O] octahedra (O from oxo ligands) sharing a common edge, with strongly asymmetric double fluorine bridges. In contrast to analogous dimeric anions of Al or Fe(III), the oxo ligands (H2O (1,2) or phosphate (3)) are in equatorial trans-positions within the bridging plane. The strong pseudo-Jahn-Teller effect of octahedral Mn(III) complexes is documented in a huge elongation of an octahedral axis, namely that including the long bridging Mn-F bond and the Mn-O bond. In spite of different charge of the anion in the fluoride phosphate, the octahedral geometry is almost the same as in the aqua-fluoro compounds. The strong distortion is reflected also in the ligand field spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号