首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(trimethylene terephthalate) (PTT), a highly birefringent aromatic polyester, has been utilized to understand the mechanisms of crystal assembly into diversified types of banded spherulites. PTT exhibits three main types of banded spherulites (i.e., concentric, single‐spiral, and double‐spiral) co‐existing in sample films melt‐crystallized at 165 °C, regardless of sample thickness. The three types differ in their banding structures, interference color distributions, and nuclei geometries (S‐shape, Z‐shape, or dot‐shape). Core diameter, band spacing ratio, and height difference (Δz) around the core are the three key parameters of different banding patterns in PTT spherulites. Formation mechanism for three types of banded spherulites has been interpreted, and found to be highly correlated with the initial geometry shapes of their nuclei. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1207–1216  相似文献   

2.
Using the technique of extraction, single crystals have been obtained from polyethylene fractions isothermally crystallized from the melt at atmospheric pressure. It has been found that the lateral habit of single crystals changes in the vicinity of the transition temperature of growth regime (regime I–II): lenticular shape elongated in the direction of theb axis (type A) in the range of regime I and truncated lozenge with curved edges of {200} and {110} growth faces (type B) in that of regime II. The transition of lateral habit causes a drastic change in the width of {110} growth faces; {110} growth faces are well developed in type B crystals while they cannot be observed and must be very small in type-A crystals. It has been shown that the growth regime of the small {110} growth face of type-A crystals must be in regime I; hence the regime I–II transition can be explained as the result of this change in lateral habit (width of the {110} growth face).  相似文献   

3.
Using in‐house synthesized poly(dodecamethylene terephthalate) (P12T) as a model, periodic extinction‐banded spherulites melt‐crystallized at high Tcs (100–115 °C) are expounded in terms of growth mechanism. The extinction‐banded spherulites wildly differing from the usual blue/orange double ring‐banded spherulites are composed of all flat‐on discrete single‐crystalline lamellae packed like roof shingles (or fish scales) along the circularly curved bands and the lamellae in the extinction bands are flat with a lozenge shape with no continuous twisting at all. For P12T films of more than 10 µm crystallized at Tc = 105–115 °C, no periodic bands were seen, and all spherulites were ringless, where periodic growth precipitation of crystals to extinction does not occur until impingement. Extinction bands in the P12T spherulites with the inter‐ring spacing steadily decrease with decreasing film thickness, because for thinner films (submicrons to 2 µm), draining or depletion of available molten species takes place more frequently, leading to bands of smaller inter‐ring spacing. The petal‐like extinction bands are discussed and analyzed in detail using 3D AFM imaging. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 601–611  相似文献   

4.
A combined optical and electron microscopical study has been carried out of the crystallization habits of poly(vinylidene fluoride) (PVF2) when it is crystallized from blends with noncrystallizable poly(ethyl acrylate) (PEA). The PVF2/PEA weight ratios were 0.5/99.5,5/95, and 15/85. Isothermal crystallization upon cooling the blends from the single-phase liquid region was carried out in the range 135–155°C, in which the polymer crystallizes in the α-orthorhombic unit cell form. The 0.5/99.5 blend yielded multilayered and planar lamellar crystals. The lamellae formed at low undercoolings were lozenge shaped and bounded laterally by {110} faces. This habit is prototypical of the dendritic lateral habits exhibited by the crystals grown from the same blend at high undercoolings as well as by the constituent lamellae in the incipient spherulitic aggregates and banded spherulites that formed from the 5/95 and the 15/85 blends, respectively. In contrast with the planar crystals grown from the 0.5/99.5 blend, the formation of the aggregates grown from the 5/95 blend is governed by a conformationally complex motif of dendritic lamellar growth and proliferation. The development of these aggregates is characterized by the twisting of the orientation of lamellae about their preferential b-axis direction of growth, coupled with a fan-like splaying or spreading of lamellae about that axis. The radial growth in the banded spherulites formed from the 15/85 blend is governed by a radially periodic repetition of a similar lamellar twisting/fan-like spreading growth motif whose recurrence corresponds to the extinction band spacing. This motif differs in its fan-like splaying component from banding due to just a helicoidal twisting of lamellae about the radial direction. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Small-angle polarized light scattering from a deformed three-dimensional spherulite is formulated on the basis of the deformation model proposed in Part II of this series. The intensity distribution of scattered light is discussed chiefly for the cross-polarization condition, the so-called Hv polarization, as a function of elongation of the spherulite. In the undeformed state, the scattered intensity distribution forms the typical fourleaf clover pattern, and the intensity decreases with increasing fraction of crystals oriented randomly (type R crystals) within the crystal lamellae of the spherulites. In a system composed of type R crystals and folded-chain crystals (type B crystals) within the lamellae, the four-leaf pattern moves to the horizontal zone near the equator with increasing elongation of the spherulite, and, simultaneously, extends to some extent to the vertical zone near the meridional direction as a parameter measuring the ease of lamellar untwisting increases. In a system composed, in addition to type R and type B crystals, of crystals transformed from type B to type Ca and type Cr due to tilting and unfolding of polymer chains, respectively, within the crystal lamellae an eight-leaf pattern appears, even at small elongation up to about 30%. Each lobe of the eight-leaf pattern undergoes a characteristic change with increasing elongation. In both systems, the scattered intensity increases with sharpening of orientation distribution of crystals within the crystal lamellae.  相似文献   

6.
The ring‐banded spherulites in poly(ε‐caprolactone) (PCL) solution‐casting films in the absence and presence of multi‐walled carbon nanotube (MWCNT) are studied by atomic force microscopy (AFM), polarized optical microscopy (POM), transmission electron microscopy (TEM), and scanning electronic microscopy (SEM). The results indicate that birefringent ring‐banded spherulites of PCL can grow from solution below 50 °C, and the temperature is much lower than that from pure PCL melt. We also find out that the presence of MWCNT apparently widen the temperature range of forming ring‐banded structure. Furthermore, the mechanism for the ring‐banded structure forming is studied, and it is attributed to the twisting of lamellae crystals, and the driving force is suggested including the deflexion of lamellae bundles. In addition, effect of compressed CO2 on the morphology of PCL and PCL/MWCNT solution‐casting film is also investigated, and the results reveal that both PCL and PCL/MWCNT films undergo recrystallization with the treatment of compressed CO2 and accordingly, the related properties can be adjusted. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 784–792, 2009  相似文献   

7.
用偏光显微镜和原子力显微镜对比研究了PEG-PLLA嵌段共聚物在110℃或120℃等温结晶后的结晶形貌.发现在110℃时只有PEG5000-PLLA2300和PEG5000-PLLA6300在偏光显微镜下呈现环带球晶形貌,在原子力显微镜高度图中显示明显的环带,并具有交替凸凹起伏形貌.而PEG5000-PLLA12000球晶中没有出现环带形貌而是生成了规则的环线.在120℃时,PEG5000-PLLA12000的球晶中才生成了规则的环带图案,原子力显微镜也显示了其球晶具有明显的交替凸凹起伏形貌,说明过冷度直接影响环带球晶的生成.产生周期性凸凹起伏和明暗交替消光是由片晶沿着球晶的半径方向周期性扭转造成的,片晶在凸起部分是Edge-on取向,在凹下部分是Flat-on取向.  相似文献   

8.
Morphological consequences of a localized diffusion of segregated species at crystal growth fronts have been studied in two specific contexts: (1) variation of texture in spherulites grown in unfractionated polyethylene over a range of crystallization temperatures mostly in regime II, and (2) development of elongated lamellar habits in spherulites of a polymer (isotactic polystyrene) whose native crystal habit is regularly polygonal. In relation to (1) it is shown that, as crystallization temperature is varied, there is a correlation between mean thickness of stacks of lamellae and an averaged diffusion range of segregated molecules of lower molecular weight. It is noted that lamellar organization appears to be significantly different in polyethylene fractions. In relation to (2) it is shown that principal contributors to the evolution of spherulitic texture from hedritic precursors are fragmentation of lamellae by screw dislocations and radially biased growth under the influence of concentration gradients of segregated species.  相似文献   

9.
Isotactic polybutene-1 has been crystallized from solution by the film formation method. Well-defined single crystals have been grown from solutions of the polymer in amyl acetate and its mixtures with n-butanol in all the three modifications by varying the concentration and crystallization temperature. Multilayered orthorhombic, tetragonal and hexagonal crystals with spiral ramps and terraces have been obtained from concentrated solutions near the turbidity temperature. Rotation of the screw dislocation as well as interlacing multilayered growth have been observed in the tetragonal morphology. Different types of twinning are commonly observed in the orthorhombic and hexagonal modifications. It is suggested that (a) spiral ramps grow by the mechanism of screw dislocation, (b) terraced crystals grow by the mechanism of Frank-Read source or the basal lamellae being hairy on the molecular level nucleating the next lamella, (c) movement of screw dislocation is very common in the orthorhombic and hexagonal modifications, (d) the solution temperature does not affect the morphology but the solvent concentration and the crystallization temperature decide the growth habit of the single crystals and (e) the growth mechanism of multilayered crystals and twinning are similar to those of monomeric substances.  相似文献   

10.
BTDA/m‐PDA polyimide banded spherulites with different band spacing were observed in the same sandwiched film. Atom force microscopy (AFM) analysis suggested that the banded structure was caused by periodic twisting of radial grown lamella bundles. Based on polarizing light microscopy (PLM) and AFM observation, it was found that spherulites grown near the center of the film exhibited bigger band spacing and consisted of wider lamellae compared with those grown near the fringe, which was suggested to be caused by different solvent amount during imidization and crystallization: the more solvent existed, the wider the lamella would grow and the bigger the band spacing would be. It was further proved by changing the film thickness and PAA solution concentration. SEM observation showed that when crystallized in the solution, the lamella became ultra thick and straight, and formed small particles. Powder X‐ray diffraction revealed that crystal structures of the banded spherulite and the small particle were identical or at least very similar. Another solvent with lower boiling point was used in sample preparation, however, under the same preparation conditions, the grown features of banded spherulites did not change. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 659–667, 2008  相似文献   

11.
The surface structure of the ring‐banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring‐banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2682–2691, 1999  相似文献   

12.
Poly‐3‐hydroxy butyrate has been etched and studied under scanning and transmission electron microscopes. It displays three of the following unusual features: (1) spherulites develop in a loose spiral rather than radial structure, which appears to reflect the chiral nature of the polymer; (2) in the banded spherulitic structure, lamellae oriented flat‐on to the surface are etched more deeply in relation to edge‐on lamellae; and (3) material crystallized at high temperature is less resistant to etching than that crystallized at low temperature, whereas the most rapid rate of etching appears to be where growth occurred at an intermediate temperature where the growth rate was at its maximum. The second and third phenomena are contrary to what is found in polymers such as polyethylene and polyethylene terephthalate and are attributed to excess free volume in the material located between the main lamellar bundles. Polyoxymethylene also displays the same unusual relationship of etching rate with crystallization temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 124–133, 2002  相似文献   

13.
聚羟基丁酸酯 ( PHB)是一种由细菌合成的手性高分子材料 ,其分子结构具有高度的规整性 [1] ,球晶比较大 (直径可达几毫米 ) ,是研究高分子结晶行为和形态的理想材料 [2 ] .在偏光显微镜下 ,Bauer[3]和 Martinez- Salazar等 [4 ] 曾在 PHB球晶上观察到消光带和同心的环线 .在聚环氧乙烷 [5] 和小分子液晶4-氰基 - 4 -癸氧基联苯的球晶上 [6 ] 也观察到了同心环线 .但这些工作都把同心环线归结为裂缝 ,并未提供证据 .事实上 ,偏光显微镜的低分辨率及其透视特点 [7] ,使之无法真实反映材料的表面形貌 ,因而也无法区分裂缝和台阶 .我们对光…  相似文献   

14.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

15.
The morphology of poly(propylene oxide) (PPO) crystals grown from the melt was investigated. The spherulites of the optically pure S polymers displayed a regular pattern of concentric rings as observed by polarizing optical microscopy, while the stereocopolymer developed irregularly banded, or non-banded spherulites depending on the degree of undercooling. The organization of the lamellar crystals within the spherulites was examined by means of atomic force microscopy (AFM). For all cases, the lamellar structures appeared to adopt an alternating flat or edge-on orientation. Examination of the morphology of single crystals in the melt of the stereocopolymer revealed truncated-lozenge crystals, which were elongated in shape. Results from crystallization kinetics, obtained by in situ AFM observations, showed that the elongated habit is related to differences in the growth rates of the {2 0 0} and {1 1 0} facets. Interestingly, the melt-grown RS-PPO crystals developed a curved asymmetrical three-dimensional shape. Based on these observations it can be proposed that the chiral nature of the chain is transmitted to higher structural levels of ordering in the crystal aggregates.  相似文献   

16.
综述了本课题组BTDA/m-PDA聚酰亚胺环带球晶研究的进展.通过偏光显微镜(PLM),透射电镜(TEM),和原子力显微镜(AFM),研究了球晶中片晶的生长形貌,并探讨了环带形成的机理.考察了环带球晶生长的影响因素,包括:(1)温度:在较低酰亚胺化温度下只能形成不规则的球晶,而在较高温度下形成中心环间距较大的球晶;(2)聚酰胺酸分子量:分子量较低聚酰胺酸不能形成环带球晶;(3)分子链的不对称性:通过不同比例单体共聚发现,分子链上间苯二胺和羰基的不对称性对环带的形成有着决定性的影响;(4)溶剂:随着溶剂含量的增加,环带球晶的环间距增大.  相似文献   

17.
Spherulites are common structures of semi-crystalline polymers. It has been known that semi-crystalline polymers can form spherulites when crystallized from solution or from melt. A dark Maltese cross of a spherulite could be easily observed under the polarized optical microscopy (POM). Moreover, some spherulites show an additional alternating dark and bright concentric ring structure that is attributed to the regular twisting of the radial crystallite ribbons as they grow from the spherulit…  相似文献   

18.
A new type of positive α‐iPP spherulites has been developed by self‐seeding process. The growth process of these positive α‐iPP spherulites is just like “photographic development process,” which is very different from the conventional growth process of polymer spherulites. Scanning electron microscopy (SEM) was used to explore the morphologies of these positive α‐iPP spherulites on a lamellar level. The results show that these spherulites are composed of a large number of lamellae having interwoven structures, which result in different optical character, special melting behavior, and different contrast under SEM as compared with the conventional melt‐crystallized spherulites. The development of these interwoven lamellar structures has been considered because in the sites of the original spherulites, a large number of self‐nuclei are formed because of the incomplete melting of the original spherulites and these induce nearly equal number of radial and tangential lamellae at rather high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1114–1121, 2006  相似文献   

19.
The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that γ-form crystals form below 90℃ and the α-form crystals can exist above 140℃. In the temperature range of 90-140℃, the α-form and γ-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 γ-form does not show crystal transition on heating, while α-form isothermally crystallized at 160℃ exhibits Brill transition at a little higher than 180℃ on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175℃ shows the ringed banded spherulites. However, at temperatures below 160℃ the ringed banded image disappears, and cross-extinct spherulites are formed.  相似文献   

20.
Anisotropic growth of β-form crystals of isotactic polypropylene in type III and type IV spherulites has made possible microanalysis of the unit cell structure, optical properties, and crystal arrangement within the spherulites. Micro x-ray studies of the type III and type IV spherulites show that interspherulitic β-form crystals have a hexagonal unit cell with dimensions; a = 19.08 Å and c = 6.49 Å. The intrinsic refractive indices of these β-form crystals are 1.506 along the a axis and 1.536 along the c axis. The organization of the crystals within the spherulites and the optical properties of the spherulites are also quantitatively evaluated. Both the type III and type IV spherulites have the a axis of the crystal radial while the crystals rotate randomly around the type III spherulite radii and periodically around the type IV spherulite radii. The radial refractive index for both the type III and type IV spherulites has the same value of 1.496. The tangential refractive index of the type III spherulite has a constant value of 1.509; it varies periodically between a minimum of 1.496 and a maximum of 1.519 in the type IV spherulite. Microtechniques such as micro x-ray diffraction, interference microscopy, birefringence, and optical microscopy were required for acquisition of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号