首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brown A  Morales C  Gomez FA 《Talanta》2008,74(4):605-612
In this paper, we describe the development of a microfluidic/capillary electrophoresis (CE) technique employing partial filling affinity capillary electrophoresis (PFACE) to estimate binding constants of ligands to receptors using as model systems carbonic anhydrase B (CAB, EC 4.2.1.1) and vancomycin from Streptomyces orientalis. Using multilayer soft lithography (MSL), a microfluidic device (MD) consisting of fluid and control channels is fabricated and fitted with an external capillary column. Multiple flow channels allows for manipulation of a zone of ligand and sample containing receptor and non-interacting standards into the MD and subsequently into the capillary column. Upon electrophoresis the sample components migrate into the zone of ligand where equilibrium is established. Changes in migration time of the receptor are used in the analysis to obtain a value for the binding interaction. The manipulation of small volumes of solution on the MD minimizes the need of time-consuming pipetting steps.  相似文献   

2.
《Electrophoresis》2017,38(6):938-941
In this study, the affinity interactions between RAW 264.7 macrophages and three small molecules including naringin, oleuropein and paeoniflorin were evaluated by affinity capillary electrophoresis (ACE), partial filling affinity capillary electrophoresis (PFACE) and frontal analysis capillary electrophoresis (FACE), respectively. The result indicated that ACE (varying concentrations of cell suspension were filled in the capillary as receptor) may not be suitable for the evaluation of interactions between cell and small molecules due to the high viscosity of cell suspension; PFACE can qualitatively evaluate the interaction, but the difference in viscosity between RAW264.7 suspension and buffer effects on the liner relationship between filling length and injection time, which makes the calculation of binding constant difficult. Furthermore, based on the PFACE results, naringin showed stronger interaction with macrophages than the other two molecules; taking advantage of the aggregation phenomenon of cell induced by electric field, FACE was successfully used to determine the stoichiometry (n = 5×109) and binding constant (Kb = 1×104 L/mol) of the interaction between RAW264.7 and naringin.  相似文献   

3.
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column is first partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides. This is followed by plugs of buffer, antibiotic and two noninteracting standards, and acetic and/or succinic anhydride (and buffer in the case of ACE). The order of the reagent plugs containing the antibiotic and anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in the relative migration time ratio (RMTR) of the new glycopeptide relative to the standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant K(b). The techniques described here can be used to assess how the derivatization of drugs alters their affinities for target molecules.  相似文献   

4.
Binding constants of the glycopeptide antibiotics teicoplanin (Teic), ristocetin (Rist), and vancomycin (Van), and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column ligand and receptor synthesis coupled to affinity capillary electrophoresis (ACE) or partial filling ACE (PFACE). In the first technique, 9-fluorenylmethoxycarbonyl (Fmoc)-amino acid-D-Ala-D-Ala species are first synthesized using on-column techniques. The initial sample plug contains a D-Ala-D-Ala terminus peptide and two non-interacting standards. Plugs two and three contain solutions of Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester and buffer, respectively. Upon electrophoresis, the initial D-Ala-D-Ala peptide reacts with the Fmoc-amino acid NHS ester yielding the Fmoc-amino acid D-Ala-D-Ala peptide. Continued electrophoresis results in the overlap of the glycopeptide in the running buffer and the plug of Fmoc-amino acid-D-Ala-D-Ala peptide and non-interacting markers. Subsequent analysis of the change in the electrophoretic mobility (mu) or relative migration time ratio (RMTR) of the peptide relative to the non-interacting standards, as a function of the concentration of the antibiotic, yields a value for the binding constant. In the second technique, derivatives of the glycopeptides Teic and Rist are first synthesized on-column before analysis by ACE or PFACE. After the column has been partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides, a plug of buffer followed by two separate plugs of reagents are injected. The order of the reagent plugs containing the antibiotic and two non-interacting standards and the anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in RMTR of the new glycopeptide relative to the non-interacting standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant.  相似文献   

5.
This work details the determination of the minimal injection time of ligand required in flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of ligands to receptors. Two model systems are examined in this study: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, and vancomycin from Streptomyces orientalis and d-Ala-d-Ala peptides. Using CAB, a minimal injection time of 0.07 min at high pressure was determined that provided for the accurate and reproducible measurement of binding constants. In the FTPFACE technique, the capillary is first partially filled with a zone of ligand followed by a sample plug containing receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the zone of ligand where a dynamic equilibrium is achieved between receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug prior to detection. Analysis of the change in the relative migration time ratio (RMTR) of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. In the present study, variable injection times of 4-carboxybenzenesulfonamide (CBSA) were examined to determine the minimal injection time needed to establish an equilibrium between CAB and ligand. A mathematical relationship was derived that correlated injection time and ligand concentration to the change in RMTR and comparisons made between the experimental and calculated values. Binding constants were obtained for a series of arylsulfonamide ligands and d-Ala-d-Ala terminus peptides to CAB and Van, respectively. The results support the use of FTPFACE to estimate affinity constants under variable experimental conditions.  相似文献   

6.
This work describes the use of a dual-standard analysis approach termed the time-average ratio (TAR) in affinity capillary electrophoresis (ACE) to estimate binding constants of receptors to ligands. In this form of analysis the TAR is the migration time of the receptor divided by the average of the sum of the migration times of two non-interacting standards. This change in TAR as a function of the concentration of ligand yields a value for the binding constant. This concept is demonstrated using three model systems: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, vancomycin (Van) and ristocetin (Rist) from Streptomyces orientalis and Nocardia lurida, respectively, and d-Ala- d-Ala terminus peptides. Three ACE techniques are used to examine the three systems: standard ACE, flow-through partial-filling ACE (FTPFACE), and on-column derivatization coupled to ACE. The findings described here demonstrate that ACE data analyzed using the TAR form of analysis yield binding constants between receptors and ligands comparable to those estimated using other ACE forms of analysis. A comparison to three other forms of analysis is described.  相似文献   

7.
Montes RE  Hanrahan G  Gomez FA 《Electrophoresis》2008,29(16):3325-3332
This work expands the knowledge of the use of chemometric response surface methodology (RSM) in optimizing conditions for competitive binding partial filling ACE (PFACE). Specifically, RSM in the form of a Box-Behnken design was implemented in flow-through PFACE (FTPFACE) to effectively predict the significance of injection time, voltage, and neutral ligand (neutral arylsulfonamide) concentration, [L(o)], on protein-neutral ligand binding. Statistical analysis results were used to create a model for response surface prediction via contour and surface plots at a given maximum response (DeltaRMTR) to reach a targeted K(b) = 2.50 x 10(6) M(-1). The adequacy of the model was then validated by experimental runs at the optimal predicted solution (injection time = 2.3 min, voltage = 11.6 kV, [L(o)] = 1.4 microM). The achieved results greatly extend the usefulness of chemometrics in ACE and provide a valuable statistical tool for the study of other receptor-ligand combinations.  相似文献   

8.
This work evaluates the use of a competitive binding assay using flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of neutral ligands to a receptor. We demonstrate this technique using, as a model system, carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides. In this technique, the capillary is first partially filled with a negatively charged ligand, a sample containing CAB and two noninteracting standards, and a neutral ligand, then electrophoresed. Upon application of a voltage the sample plug migrates into the plug of negatively charged ligand (L(-)) resulting in the formation of a CAB-L(-) complex. Continued electrophoresis results in mixing between the neutral ligand (L(0)) and the CAB-L(-) complex. L(0) successfully competes out L(-) to form the new CAB-L(0) complex. Analysis of the change in the relative migration time ratio (RMTR) of CAB relative to the noninteracting standards, as a function of neutral ligand concentration, yields a value for the binding constant. These values are in agreement with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.  相似文献   

9.
This work evaluates the concept of a partial-filling technique in affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique the capillary is first partially-filled with ligand followed by a sample of receptor and non-interacting standard and electrophoresed. Analysis of the change in the mobility ratio, M, of the receptor, relative to the non-interacting standard, as a function of the concentration of the ligand, yields a value for the binding constant. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.  相似文献   

10.
This paper describes a two-step procedure whereby on-column ligand synthesis and partial-filling affinity capillary electrophoresis (PFACE) are sequentially coupled to each other to determine the binding constants of 9-fluorenylmethoxy carbonyl (Fmoc)-amino acid-D-Ala-D-Ala species to vancomycin (Van) from Streptomyces orientalis. In this technique four separate plugs of sample are injected onto the capillary column and electrophoresed. The initial sample plug contains a D-Ala-D-Ala terminus peptide and two non-interacting standards. Plugs two and three contain solutions of Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester and running buffer, respectively. The fourth sample plug contains an increasing concentration of Van partially-filled onto the capillary column. Upon electrophoresis the initial D-Ala-D-Ala peptide reacts with the Fmoc-amino acid NHS ester yielding the Fmoc-amino acid D-Ala-D-Ala peptide. Continued electrophoresis results in the overlap of the plugs of Van and Fmoc-amino acid-D-Ala-D-Ala peptide and non-interacting markers. Analysis of the change in the relative migration time ratio of the Fmoc-amino acid-D-Ala-D-Ala peptide relative to the non-interacting standards, as a function of the concentration of Van, yields a value for the binding constant. These values agree well with those estimated using other binding and ACE techniques.  相似文献   

11.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   

12.
Microdialysis (MD) is a sampling technique that can be employed to monitor biological events both in vivo and in vitro. When it is coupled to an analytical system, microdialysis can provide near real-time information on the time-dependent concentration changes of analytes in the extracellular space or other aqueous environments. Online systems for the analysis of microdialysis samples enable fast, selective and sensitive analysis while preserving the temporal information. Analytical methods employed for online analysis include liquid chromatography (LC), capillary (CE) and microchip electrophoresis and flow-through biosensor devices. This review article provides an overview of microdialysis sampling and online analysis systems with emphasis on in vivo analysis. Factors that affect the frequency of analysis and, hence, the temporal resolution of these systems are also discussed.  相似文献   

13.
Simul 5 Complex is a one-dimensional dynamic simulation software designed for electrophoresis, and it is based on a numerical solution of the governing equations, which include electromigration, diffusion and acid-base equilibria. A new mathematical model has been derived and implemented that extends the simulation capabilities of the program by complexation equilibria. The simulation can be set up with any number of constituents (analytes), which are complexed by one complex-forming agent (ligand). The complexation stoichiometry is 1:1, which is typical for systems containing cyclodextrins as the ligand. Both the analytes and the ligand can have multiple dissociation states. Simul 5 Complex with the complexation mode runs under Windows and can be freely downloaded from our web page http://natur.cuni.cz/gas. The article has two separate parts. Here, the mathematical model is derived and tested by simulating the published results obtained by several methods used for the determination of complexation equilibrium constants: affinity capillary electrophoresis, vacancy affinity capillary electrophoresis, Hummel-Dreyer method, vacancy peak method, frontal analysis, and frontal analysis continuous capillary electrophoresis. In the second part of the paper, the agreement of the simulated and the experimental data is shown and discussed.  相似文献   

14.
An estimation method for determination of binding constants of receptors to ligands by affinity capillary electrophoresis was evaluated. On the basis of the theories of pseudostationary phase or so-called dynamic stationary phase, the retention factor (k) was used to represent the interaction between the receptor and ligand. k could be easily deduced from the migration times of the ligand and the receptor. Then, with the linear relationship of k versus the concentration of ligand in the running buffer, the binding constant K b was calculated from the slope and intercept. In order to test its feasibility, the calculation method was demonstrated using three model systems: the interactions between vancomycin and N-acetyl-d-Ala-d-Ala, ristocetin and N-acetyl-d-Ala-d-Ala, and carbonic anhydrase B and an arylsulfonamide. Estimated binding constants were compared with those determined by other techniques. The results showed that this estimation method was reliable. This calculation method offers a simple and easy approach to estimating binding constants of ligands to receptors.  相似文献   

15.
This work utilizes on-column ligand synthesis and affinity capillary electrophoresis (ACE) to determine binding constants (Kb) of 9-flourenylmethyloxy carbonyl (Fmoc)-amino acid derivatives to the glycopeptide antibiotics ristocetin (Rist) and teicoplanin (Teic). In this technique, two separate plugs of sample are injected on to the capillary column and electrophoresed. The initial sample plug contains a d-Ala-d-Ala terminus peptide and either one or two non-interacting standard(s). The second plug contains a Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester. The electrophoresis is then carried out with an increasing concentration of Rist or Teic in the running buffer. Upon electrophoresis the initial d-Ala-d-Ala peptide reacts with the Fmoc-amino acid yielding a new Fmoc-amino acid-d-Ala-d-Ala peptide derivative. Continued electrophoresis results in the binding of Rist or Teic to the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility () of the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives relative to the non-interacting standards, as a function of the concentration of Rist and Teic, yields a value for Kb. These findings demonstrate the advantage of coupling on-column ligand synthesis to ACE for estimating binding parameters between antibiotics and ligands.Abbreviations Rist Ristocetin - Teic Teicoplanin - ACE Affinity capillary electrophoresis - RMTR Relative migration time ratio  相似文献   

16.
This work demonstrates the use of multiple-step ligand injection affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique a sample plug of receptor and non-interacting standards is injected by pressure and electrophoresed in a buffer containing a given concentration of ligand. The sequence is repeated for all concentrations of ligand generating a single electropherogram containing a series of individual sample plugs superimposed on environments of buffer containing increasing concentrations of ligand. Analysis of the change in the relative migration time ratio, RMTR, relative to the non-interacting standards, as a function of the concentration of the ligand, yields a value for the binding constant. A competitive assay using the technique is also demonstrated using neutral ligands for CAB. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method are presented.  相似文献   

17.
We have developed a capillary electrophoresis method to characterize the QD surface ligand interactions with various surfactant systems. The method was demonstrated with 2–5 nm CdSe nanoparticles surface-passivated with trioctylphosphine oxide (TOPO). Water solubility was accomplished by surfactant-assisted phase transfer via an oil-in-water microemulsion using either cationic, anionic, or non-ionic surfactants. Interaction between the QD surface ligand (TOPO) and the alkyl chain of the surfactant molecule produces a complex and dynamic surface coating that can be characterized through manipulation of CE separation buffer composition and capillary surface modification. Additional characterization of the QD surface ligand interactions with surfactants was accomplished by UV-VIS spectroscopy, photoluminescence, and TEM. It is anticipated that studies such as these will elucidate the dynamics of QD surface ligand modifications for use in sensors.   相似文献   

18.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

19.
In this study, two capillary electrophoresis–based ligand binding assays, namely, mobility shift affinity capillary electrophoresis (ms-ACE) and capillary electrophoresis-frontal analysis (CE-FA), were applied to determine binding parameters of human serum albumin toward small drugs under similar experimental conditions. The substances S-amlodipine (S-AML), lidocaine (LDC), l -tryptophan (l -TRP), carbamazepine (CBZ), ibuprofen (IBU), and R-verapamil (R-VPM) were used as the main binding partners. The scope of this comparative study was to estimate and compare both the assays in terms of their primary measure's precision and the reproducibility of the derived binding parameters. The effective mobility could be measured with pooled CV values between 0.55% and 7.6%. The precision of the r values was found in the range between 1.5% and 10%. Both assays were not universally applicable. The CE-FA assay could successfully be applied to measure the drugs IBU, CBZ, and LDC, and the interaction toward CBZ, S-AML, l -TRP, and R-VPM could be determined using ms-ACE. The average variabilities of the estimated binding constants were 64% and 67% for CE-FA and ms-ACE, respectively.  相似文献   

20.
Two carrier-free electrophoretic separation methods, capillary zone electrophoresis (CZE) and continuous free-flow zone electrophoresis (FFZE), have been applied to both microanalysis at the nanogram level and preparative fractionation, with a throughput of 30 mg/h, of synthetic growth hormone releasing peptide (GHRP). A crude product of GHRP, a hexapeptide with the sequence His-D-Trp-Ala-Trp-D-Phe-Lys-NH2, synthesized by the solid phase methodology, was desalted and analyzed by CZE. Based on the results of analytical CZE the separation was converted into a preparative purification procedure by continuous FFZE, employing the same separation medium (0.5 mol/L acetic acid, pH 2.6). The purifity of peptide fractions obtained by FFZE was reevaluated by CZE. The combination of these two techniques proved to be a valuable tool for both peptide analysis and peptide purification. A close correlation of CZE and FFZE, resulting from the fact that both methods are based on the same separation principle (zone electrophoresis) and that both are performed in a free solution of the same composition, was confirmed. However, when transforming data from CZE to FFZE, the different electroosmotic flow, temperature and electric field intensity in the capillary and in the flow-through cell, respectively, have to be taken into account and corresponding corrections have to be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号