首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the context of quantum field theories in curved spacetime, we compute the effective action of the transition amplitude from vacuum to vacuum in the presence of an external gravitational field. The imaginary part of the resulted effective action determines the probability of vacuum decay via a quantum tunneling process, giving the rate and spectrum of particle creations. We show that (i) the gravitational field polarizes the vacuum and discretizes its spectrum; (ii) vacuum gains gravitational energy by such a polarization. On the basis of gravitational vacuum polarization, we discuss the quantum origin of vacuum decay in curved spacetime as pair-creations of particles and anti-particles. The thermal spectrum of particle creations is attributed to (i) the CPT invariance of pair-creations (annihilations) from (into) vacuum and (ii) vacuum acts as a reserve with the temperature determined by gravitational energy-gain.  相似文献   

2.
《Nuclear Physics B》1998,524(3):639-657
The one-loop effective action for QED in curved spacetime contains equivalence principle violating interactions between the electromagnetic field and the spacetime curvature. These interactions lead to a dependence of the photon velocity on the motion and polarization directions. In this paper we investigate the gravitational analogue to the electromagnetic birefringence phenomenon in the static and radiating topological black hole backgrounds. For the static topological black hole spacetimes, the velocity shift of photons is the same as that in Reissner-Nordström black holes. This reflects the fact that the propagation of vacuum polarized photons is not sensitive to the asymptotic behavior and topological structure of spacetimes. For the massless topological black hole and BTZ black hole, the light cone condition remains unchanged. In the radiating topological black hole backgrounds, the light cone condition is changed even for the radially directed photons. The velocity shifts depend on the topological structures. Due to the null fluid, the velocity shift of photons no longer vanishes at the apparent horizons as well as the event horizons. However, the “polarization sum rule” is still valid.  相似文献   

3.
By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and conserved.  相似文献   

4.
李昕  常哲 《理论物理通讯》2013,(11):535-540
By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitationaJ wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the easuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and conserved.  相似文献   

5.
6.
The problem of the motion of a free particle in a uniform gravitational field is considered. A relativistic solution based on the assumption that the motion is a consequence of the curvature of spacetime is obtained. The results are compared with various results based on the assumption that spacetime is flat in a region in which the gravitational field is uniform. In the curved spacetime approach, if a particle is projected from a point in a uniform gravitational field, the vertical distance covered by the particle in infinite coordinate time is infinite, but the horizontal distance covered and the elapsed proper time of the particle are finite. If spacetime is assumed to be flat and the gravitational motion of a particle a consequence of a relativistic force proportional to the relative mass of the particle, then the results obtained for the motion of a particle in a uniform gravitational field are close to the curved spacetime results. All other assumptions, including the assumption that the motion of a particle in a uniform gravitational field is equivalent to the motion of a particle in a uniformly accelerating frame of reference, lead to results in serious disagreement with the curved spacetime results.  相似文献   

7.
《Nuclear Physics B》1996,460(2):379-394
A number of general issues relating to superluminal photon propagation in gravitational fields are explored. The possibility of superluminal, yet causal, photon propagation arises because of Equivalence Principle violating interactions induced by vacuum polarisation in QED in curved spacetime. Two general theorems are presented: first, a polarisation sum rule which relates the polarisation averaged velocity shift to the matter energy-momentum tensor and second, a ‘horizon theorem’ which ensures that the geometric event horizon for black hole spacetimes remains a true horizon for real photon propagation. These results are consequences of an effective action which in QED is valid only for low frequency photons. Their relevance to signal propagation and causality, which are controlled by high frequency propagation, is dependent on the dispersive properties of the modified propagation. This will be discussed elsewhere. A comparison is made with the equivalent results for electromagnetic birefringence and possible connections between superluminal photon propagation, causality and the conformal anomaly are exposed.  相似文献   

8.
We study a possible gravitational vacuum-effect, in which vacuum-energy variation is due to variation of gravitational field, vacuum state gains gravitational energy and releases it by spontaneous photon emissions. Based on the path-integral representation, we present a general formulation of vacuum transition matrix and energy-momentum tensor of a quantum scalar field theory in curved spacetime. Using analytical continuation of dimensionality of the phase space, we calculate the difference of vacuum-energy densities in the presence and absence of gravitational field. Using the dynamical equation of gravitational collapse, we compute the rate of vacuum state gaining gravitational energy. Computing the transition amplitude from initial vacuum state to final vacuum state in gravitational collapsing process, we show the rate and spectrum of spontaneous photon emissions for releasing gravitational energy. We compare our idea with the Schwinger idea for Sonoluminiescence and contrast our scenario with the Hawking effect.  相似文献   

9.
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.  相似文献   

10.
In quantum theory, the curved spacetime of Einstein's general theory of relativity acts as a dispersive optical medium for the propagation of light. Gravitational rainbows and birefringence replace the classical picture of light rays mapping out the null geodesics of curved spacetime. Even more remarkably, superluminal propagation becomes a real possibility, raising the question of whether it is possible to send signals into the past. In this article, we review recent developments in the quantum theory of light propagation in general relativity and discuss whether superluminal light is compatible with causality.  相似文献   

11.
A modified finite volume method with unstructured triangular meshes is proposed to solve the RTE in 2D complex geometries and for graded index media. In such media, the RTE has an additional term corresponding to “angular redistribution”. This term is due to the change in the orientation of the direction of propagation for the radiation along curved optical paths. Some benchmark cases applied to a slab (1D) and a square cavity (2D) with linear and nonlinear refractive graded index are used to validate the new method. New results are presented for a disk with radial graded index.  相似文献   

12.
An explicit fluid flow simulation of electromagnetic wave propagation in the gravitational field of a Schwarzschild black hole is given. The fluid has a constant refractive index and a spherically symmetric inward directed flow. The resulting form of the metric leads to a new coordinate system in which the Schwarzschild vacuum is written in Gordon's form. It is shown that a closely related coordinate system interpolates between the Kerr-Schild and Painlevé-Gullstrand coordinates.  相似文献   

13.
14.
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.  相似文献   

15.
余仁勇  金尚忠  梁培  岑松原  王乐 《光子学报》2014,39(12):2200-2203
针对封装胶中掺杂纳米颗粒以及采用梯度折射率的LED封装模式,用蒙特卡罗方法模拟光在胶体中的传播,分析散射系数对透光率的影响.结果表明,透光率随散射系数增大而减小.对于固定的封装层数,各层均采取最佳折射率值时,透光率可以达到最大.梯度折射率值逐渐减小的多层纳米掺杂封装结构,透光率高于传统的封装模式,能够提高LED的出光效率.  相似文献   

16.
The possibility that quantum fluctuations in the structure of spacetime at the Planck scale might be subject to experimental probes in discussed. The effects of spacetime foam in an approach inspired by string theory, in which solitonic D-brane excitations are taken into account when considering the ground state, are studied. The properties of this medium are described by analyzing the recoil of a D particle which is induced by the scattering of a closed-string state. This recoil causes an energy-dependent perturbation of the background metric, which in turn induces an energy-dependent refractive index in vacuo, and stochastic fluctuations of the light cone. Distant astrophysical sources such as Gamma-Ray Bursters (GRBs) may be used to test this possibility, and an illustrative analysis of GRBs whose redshifts have been measured is presented. The propagation of massive particles through such a quantum spacetime foam is also discussed.  相似文献   

17.
The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries.  相似文献   

18.
M. Leclerc 《Annals of Physics》2007,322(10):2279-2303
Canonical Hamiltonian field theory in curved spacetime is formulated in a manifestly covariant way. Second quantization is achieved invoking a correspondence principle between the Poisson bracket of classical fields and the commutator of the corresponding quantum operators. The Dirac theory is investigated and it is shown that, in contrast to the case of bosonic fields, in curved spacetime, the field momentum does not coincide with the generators of spacetime translations. The reason is traced back to the presence of second class constraints occurring in Dirac theory. Further, it is shown that the modification of the Dirac Lagrangian by a surface term leads to a momentum transfer between the Dirac field and the gravitational background field, resulting in a theory that is free of constraints, but not manifestly hermitian.  相似文献   

19.
Naresh Dadhich 《Pramana》1997,49(4):417-420
We prove the theorem: A necessary and sufficient condition for a spacetime to represent an isothermal fluid sphere (linear equation of state with density falling off as inverse square of the curvature radius) without boundary is that it is conformal to a spacetime of zero gravitational mass (‘minimally’ curved).  相似文献   

20.
Newton's third law of motion is examined in the context of the theories of direct interparticle action. In such theories, interactions between particles travel backward and forward in time at speeds not exceeding the speed of light. It is shown that while in the flat spacetime the equality of action and reaction can be clearly demonstrated, the situation is considerably more complicated in the curved spacetime. The phenomenon of gravitational scattering intervenes to destroy the equality of action and reaction. Nevertheless, when gravitation is taken into account, there is no violation of the conservation law of energy and momentum. These results are discussed in the framework of general relativity for the case of the electromagnetic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号