首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphors in the system Y3−xAl5-yO12:xCe3+,yCr3+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have absorption in the visible light region and give luminescence in the far-red region (∼688 nm), which are suitable for the application in the device of luminescent solar concentrator (LSC). In these phosphors, Ce3+ located at Y3+ site can effectively transfer its absorbed energy to Cr3+ at Al3+ site.  相似文献   

2.
A series of phosphors with the composition Y3−xMnxAl5−xSixO12 (x=0, 0.025, 0.050, 0.075, 0.150, 0.225, 0.300) were prepared with solid state reactions. The X-ray powder diffraction analysis of samples shows that the substitution of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance decrease to a certain extent. The emission spectra show that Mn2+ in Y3Al5O12 emits yellow-orange light in a broad band. With the increment of substitution content, the emission intensity of the phosphors increases firstly then decreases subsequently, and the emission peak moves to longer wavelength. Afterglow spectra and decay curves show that all the Mn2+ and Si4+ co-doped samples emit yellow-orange light with long afterglow after the irradiation of ultraviolet light. The longest afterglow time is 18 min. Thermoluminescence measurement shows that there exist two kinds of traps with different depth of energy level and their depth decreases with the increment of substitution content.  相似文献   

3.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

4.
Y0.99−xPO4:0.01Dy3+, xBi3+ (x=0, 0.01, 0.05, 0.10, 0.15, 0.20 and 0.25) phosphors have been synthesized by a modified chemical co-precipitation method using urea as a pH value regulator. The samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples have only single tetragonal structure when x≤0.15, but extraneous BiPO4 phase appears besides major tetragonal phase when x≥0.20. The crystallinity of the samples is found to improve with increasing Bi3+ ion concentration from 0 to 15 mol%, and then decreased for higher concentrations associated with increasing BiPO4 phase. Photoluminescence excitation spectra results show that the phosphor can be efficiently excited by ultraviolet light from 250 to 400 nm including four peaks at 294, 326, 352 and 365 nm. Emission spectra exhibit strong blue emission (483 nm) and another strong yellow emission (574 nm). When the Bi3+ ion concentration is 1 mol%, the intensity of excitation and emission spectra increased evidently. In addition, the yellow-to-blue emission intensity ratio (IY/IB) is strongly related to the excitation wavelength and not to the Bi3+ ion concentration.  相似文献   

5.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

6.
Jidi Liu  Xue Yu  Jie Li 《Journal of luminescence》2010,130(11):2171-2174
A series of green phosphors Zn1.92−2xYxLixSiO4:0.08Mn2+ (0≤x≤0.03) were prepared by solid-state synthesis method. Phase and lattice parameters of the synthesized phosphors were characterized by powder X-ray diffractometer (XRD) and the co-doped effects of Y3+/Li+ upon emission intensity and decay time were investigated under 147 nm excitation. The results indicate that the co-doping of Y3+/Li+ has favorable influence on the photoluminescence properties of Zn2SiO4:Mn2+, and the optimal photoluminescence intensity of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 103% of that of commercial phosphor when the doping concentration of Y3+/Li+ is 0.01 mol. Additionally, the decay time of phosphor is much shortened and the decay time of Zn1.90Y0.01Li0.01SiO4:0.08Mn2+ is 3.39 ms, shorter by 1.83 ms than that of commercial product after Y3+/Li+ co-doping.  相似文献   

7.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

8.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

9.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

10.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

11.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

12.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

13.
Ce3+ and Dy3+ activated Li2CaGeO4 phosphors were prepared by a solid-state reaction method, and characterized by XRD (X-ray diffraction) and photoluminescence techniques. The characteristic emission bands of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions were detected in the emission spectra of Li2CaGeO4:Dy3+. Ce3+ broad band emission was observed in Li2CaGeO4:Ce3+ phosphors at 372 and 400 nm due to 5d→4f transition when excited at 353 nm. Co-doping of Ce3+ enhanced the luminescence of Dy3+ significantly and concentration quenching occurs when Dy3+ is beyond 0.04 mol%. White-light with different hues can be realized by tuning Dy3+ concentration in the phosphors.  相似文献   

14.
Lead bismuth arsenate glasses mixed with different concentrations of WO3 (ranging from 0 to 6.0 mol%) were synthesized. Differential thermal analysis (DTA), optical absorption, ESR and IR spectral studies have been carried out. The results of DTA have indicated that there is a gradual decrease in the resistance of the glass against devitrification with increase in the concentration of WO3 upto 4.0 mol%.The optical absorption spectra of these glasses exhibited a relatively broad band peaking at about 880 nm identified due to dxydx2y2 transition of W5+ ions; this band is observed to be more intense in the spectrum of glass containing 4.0 mol% of WO3. Further, two prominent kinks attributed to 3P01S0, 1D2 transitions of Bi3+ ions have also been located in the absorption spectra. The ESR spectra of these glasses recorded at room temperature exhibited an asymmetric signal at g∼1.71 and gll∼1.61. The intensity of the signal is observed to be maximal for the spectrum of the glass W4. The quantitative analysis of optical absorption and ESR spectral studies have indicated that there is a maximum reduction of tungsten ions from W6+ state to W5+ state in the glass containing 4.0 mol% of WO3. The IR spectral studies have indicated that there is a increasing degree of disorder in the glass network with increase in the concentration of WO3 upto 4.0 mol%.  相似文献   

15.
In this study, the red phosphors, Y2W1−xMoxO6:Eu3+ and Y2WO6:Eu3+,Bi3+, have been investigated for light-emitting diode (LED) applications. In Y2WO6:Eu3+, the excitation band edge shifts to longer wavelength with the incorporation of Mo6+ or Bi3+ ions. The emission spectra exhibit 5D07F1 and 5D07F2 transition of Eu3+ ion at 588, 593, and 610 nm, respectively. Moreover, the bluish-green luminescence of the WO66− at about 460 nm is observed to decrease with the incorporation of Mo6+, which results in pure red color. Thus, this study shows that the red phosphor, Y2WO6:Eu3+, incorporated with Mo6+ or Bi3+ ions is advantageous for LEDs applications.  相似文献   

16.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

17.
Non-radiative energy transfers (ET) from Ce3+ to Pr3+ in Y3Al5O12:Ce3+, Pr3+ and from Sm3+ to Eu3+ in CaMoO4:Sm3+, Eu3+ are studied based on photoluminescence spectroscopy and fluorescence decay patterns. The result indicates an electric dipole-dipole interaction that governs ET in the LED phosphors. For Ce3+ concentration of 0.01 in YAG:Ce3+, Pr3+, the rate constant and critical distance are evaluated to be 4.5×10−36 cm6 s−1 and 0.81 nm, respectively. An increase in the red emission line of Pr3+ relative to the yellow emission band of Ce3+, on increasing Ce3+ concentration is observed. This behavior is attributed to the increase of spectral overlap integrals between Ce3+ emission and Pr3+ excitation due to the fact that the yellow band shifts to the red spectral side with increasing Ce3+ concentration. In CaMoO4:Sm3+, Eu3+, Sm3+-Eu3+ transfer occurs from 4G5/2 of Sm3+ to 5D0 of Eu3+. The rate constant of 8.5×10−40 cm6 s−1 and the critical transfer distance of 0.89 nm are evaluated.  相似文献   

18.
In the present paper, phosphors with the composition Y3−x−yAl5O12:Bi3+x, Dy3+y were synthesized with solid state reactions. The luminescence properties of Bi3+ and Dy3+ in Y3Al5O12(YAG) and the energy transfer from Bi3+ to Dy3+ were investigated in detail. Bi3+ in YAG emits one broad band peaking at 304 nm which can be ascribed to the transition from excited states 3P0, 1 to ground state 1S0. Dy3+ in YAG emits two groups of peaks around 484 and 583 nm, respectively, which can be ascribed to the transitions from excited state 4F9/2 to ground states 6H15/2 and 6H13/2. The co-doping of Bi3+ enhances the luminescent intensity of Dy3+ by ∼7 times because Bi3+ can transfer the absorbed energy to Dy3+ efficiently. The mechanism of energy transfer was also discussed.  相似文献   

19.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

20.
A series of Ce1−xCuxO2 nanocomposite catalysts with various copper contents were synthesized by a simple hydrothermal method at low temperature without any surfactants, using mixed solutions of Cu(II) and Ce(III) nitrates as metal sources. These bimetal oxide nanocomposites were characterized by means of XRD, TEM, HRTEM, EDS, N2 adsorption, H2-TPR and XPS. The influence of Cu loading (5-25 mol%) and calcination temperature on the surface area, particle size and catalytic behavior of the nanocomposites have been discussed. The catalytic activity of Ce1−xCuxO2 nanocomposites was investigated using the test of CO oxidation reaction. The optimized performance was achieved for the Ce0.80Cu0.20O2 nanocomposite catalyst, which exhibited superior reaction rate of 11.2 × 10−4 mmol g−1 s−1 and high turnover frequency of 7.53 × 10−2 s−1 (1% CO balanced with air at a rate of 40 mL min−1, at 90 °C). No obvious deactivation was observed after six times of catalytic reactions for Ce0.80Cu0.20O2 nanocomposite catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号