首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed molecular dynamics simulations of the electrostatic assembly of multilayers of flexible polyelectrolytes at a charged surface. The multilayer build-up was achieved through sequential adsorption of oppositely charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The steady-state multilayer growth proceeds through a charge reversal of the adsorbed polymeric film which leads to a linear increase in the polymer surface coverage after completion of the first few deposition steps. Moreover, substantial intermixing between chains adsorbed during different deposition steps is observed. This intermixing is consistent with the observed requirement for several deposition steps to transpire for completion of a single layer. However, despite chain intermixing, there are almost perfect periodic oscillations of the density difference between monomers belonging to positively and negatively charged macromolecules in the adsorbed film. Weakly charged chains show higher polymer surface coverage than strongly charged ones.  相似文献   

2.
We have used atomic force microscopy to study the morphology of hydrophobic polyelectrolytes adsorbed on surfaces. The polyelectrolytes consisted of polystyrene sulfonate (PSS) chains made with three charge densities: 32%, 67%, and 92%. They were adsorbed on two types of surfaces: mica, and phospholipid bilayers made of mixed neutral and cationic lipids. We show that the chains with a low charge density (32%) are collapsed in spherical globules while highly charged chains (67% and 92%) are fully extended. End-to-end distances and contour lengths of the extended chains were measured. Statistical analysis shows that the persistence length of these chains depends on the surface where they adsorb. On lipid bilayers, highly ordered monolayers are formed upon increase of the proportion of cationic phospholipids. These results show that highly charged PSS chains behave in a similar manner than the stiffer, hydrophilic DNA when adsorbed on surfaces. It could lead to the design of new types of nanostructured surfaces using polyelectrolyte molecules synthesized with specific properties.  相似文献   

3.
The effect of the strength of electrostatic and short-range interactions on the multilayer assembly of oppositely charged polyelectrolytes at a charged substrate was studied by molecular dynamics simulations. The multilayer buildup was achieved through sequential adsorption of charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The strong electrostatic attraction between oppositely charged polyelectrolytes at each deposition step is a driving force behind the multilayer growth. Our simulations have shown that a charge reversal after each deposition step is critical for steady multilayer growth and that there is a linear increase in polymer surface coverage after the first few deposition steps. Furthermore, there is substantial intermixing between chains adsorbed during different deposition steps. We show that the polymer surface coverage and multilayer structure are each strongly influenced by the strength of electrostatic and short-range interactions.  相似文献   

4.
We have experimentally studied the adsorption of polyelectrolytes at oppositely charged surfaces. A weak flexible polyelectrolyte, poly(acrylic acid), was adsorbed from dilute solutions on a Langmuir film of a cationic amphiphile, dimethyldioctadecylammonium bromide. The polymer surface coverage, Gamma, at equilibrium was measured by two reflectivity techniques-ellipsometry and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS)-as a function of the surface charge density, sigma, and of the polymer ionization degree, alpha. Different adsorption regimes were evidenced. For weakly charged surfaces, sigma < sigma sat, Gamma increases with sigma and with 1/alpha, as expected for a neutralization of the surface by the adsorbed polymers. For highly charged surfaces, sigma > sigma sat, the adsorption of polyelectrolytes saturates. The mean orientation of the adsorbed chains also depends on the value of sigma: it is parallel to the surface for sigma < sigma (< sigma sat) and orthogonal to the surface for sigma > sigma. We have measured the values of sigma sat and sigma as a function of alpha and compared the results with existing theories.  相似文献   

5.
Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25-50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.  相似文献   

6.
We have simulated interactions between charged surfaces in the presence of oppositely charged polyelectrolytes by coupling perturbations in the isotension ensemble to a free energy variance minimization scheme. For polymeric systems, this method completely outperforms configurationally biased versions of grand canonical simulations. Proper diffusive equilibrium between bulk and slit has been established for polyelectrolytes with up to 60 monomers per chain. A consequence of imposing diffusive equilibrium conditions, in contrast to previous more restricted models, is the possibility of surface charge inversion; ion-ion correlation and the cooperativity of monomer adsorption drive the formation of a polyion layer close to the surface, that overcompensates the nominal surface charge. This is observed even at modest surface charge densities, and leads to a build up of a long ranged electrostatic barrier. In addition, the onset of charge inversion requires very low bulk polymer densities. Due to screening effects, this leads to a higher and more long-ranged free energy barrier at low, compared to high, bulk densities. Oscillatory forces, reminiscent of those found in simple hard sphere systems, are resolved in the high concentration regime. As a consequence of a second surface charge inversion, the system "stratifies" to form a stable polyelectrolyte layer in the central part of the slit, stabilized by the adsorbed surface layers.  相似文献   

7.
Highly charged polyelectrolytes adsorbed on oppositely charged colloidal particles are investigated by electrophoresis and dynamic light scattering. The dependence of the adsorbed amount and of the hydrodynamic layer thickness on the molecular mass and the salt level is analyzed. The adsorbed amount increases with increasing salt level and decreases with increasing molecular mass. The hydrodynamic layer thickness is independent of the molecular mass at low salt levels, but increases with the molecular mass as a power law with an exponent 0.10 ± 0.01 at high salt. The same behavior was observed for different polyelectrolytes and substrates and therefore is suspected to be generic. Due to semi-quantitative agreement with computer simulations carried out by Kong and Muthukumar in 1998, the observed behavior is interpreted with conformational changes of single adsorbed polyelectrolyte chains.  相似文献   

8.
9.
We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.  相似文献   

10.
The capillary electrokinetics method (measurements of streaming potential and current in original and hydrophobized fused quartz capillaries with radii of 5–7 μm) is employed to study the formation of adsorption layers upon contact with solutions containing a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). It is shown that polyelectrolyte adsorption causes the charge reversal of both hydrophilic and hydrophobic surfaces, with a smaller amount of the substance being adsorbed on the hydrophobic than on the hydrophilic surface. The adsorption on both surfaces increases with the polymer solution concentration. The cationic polyelectrolyte adsorption on the pure quartz surface occurs mainly due to the electrostatic attraction, while, in the case of the hydrophobic surface, the contribution of hydrophobic interactions increases. The study of the layer deformability shows that, on the hydrophilic surfaces, the layer ages and its structure depends on the polymer solution concentration. On the modified surface, the deformation of even freshly formed layers is slight, which suggests that a denser layer is formed on the hydrophobic surface. In contrast to the hydrophilic surface, the polyelectrolyte is partly desorbed from the hydrophobic surface.  相似文献   

11.
The possibility of exchanging adsorbed layers of PEO(45)MEMA:METAC-X brush polyelectrolytes (with two different charge densities, 10 and 75 mol%, denoted by X), with poly(MAPTAC), a highly charged linear polyelectrolyte, was investigated by quartz crystal microbalance with dissipation and reflectometry. The studies were conducted on a silica substrate at pH 10, conditions under which only electrostatic interactions are effective in the adsorption process. Based on the results, it was concluded that PEO(45)MEMA:METAC-10 forms an inhomogeneous layer at the interface through which poly(MAPTAC) chains can easily diffuse to reach the surface. On the other hand, the PEO(45)MEMA:METAC-75 layer was not affected when exposed to a poly(MAPTAC) solution. We argue that the observed effect for PEO(45)MEMA:METAC-75 is due to the formation of a homogeneous protective brush layer, in combination with the small difference in surface affinity between the bottle-brush polyelectrolyte and poly(MAPTAC), together with the difficulty of displacing highly charged polyelectrolyte chains once they are adsorbed on the oppositely charged surface. We also use the combination of QCM-D and reflectometry data to calculate the water content and layer thickness of the adsorbed layers.  相似文献   

12.
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)].  相似文献   

13.
Fibronectin displacement at polymer surfaces   总被引:1,自引:0,他引:1  
The interactions of fibronectin with thin polymer films are studied in displacement experiments using human serum albumin. Fibronectin adsorption and exchange on two different maleic anhydride copolymer surfaces differing in hydrophobicity and surface charge density have been analyzed by quartz crystal microbalance and laser scanning microscopy with respect to adsorbed amounts, viscoelastic properties, and conformation. Fibronectin is concluded to become attached onto hydrophilic surfaces as a "softer", less rigid protein layer, in contrast to the more rigid, densely packed layer on hydrophobic surfaces. As a result, the fibronectin conformation is more distorted on the hydrophobic substrates together with remarkably different displacement characteristics in dependence on the adsorbed fibronectin surface concentration and the displacing albumin solution concentration. While the displacement kinetic remains constant for the strongly interacting surface, an acceleration in fibronectin exchange is observed for the weakly interacting surface with increasing fibronectin coverage. For displaced amounts, no change is determined for the hydrophobic substrate, in contrast to the hydrophilic substrate with a decrease of fibronectin exchange with decreasing coverage leading finally to a constant nondisplaceable amount of adsorbed proteins. Furthermore, the variation of the albumin exchange concentration reveals a stronger dependence of the kinetic for the weakly interacting substrate with higher rates at higher albumin concentrations.  相似文献   

14.
The adsorption of amyloid beta-peptide at hydrophilic and hydrophobic modified silicon-liquid interfaces was characterized by neutron reflectometry. Distinct polymeric films were used to obtain noncharged (Formvar), negatively (sodium poly(styrene sulfonate)) and positively charged (poly(allylamine hydrochloride)) hydrophilic as well as hydrophobic surfaces (polystyrene and a polysiloxane-dodecanoic acid complex). Amyloid beta-peptide was found to adsorb at positively charged hydrophilic and hydrophobic surfaces, whereas no adsorbed layer was detected on hydrophilic noncharged and negatively charged films. The peptide adsorbed at the positively charged film as patches, which were dispersed on the surface, whereas a uniform layer was observed at hydrophobic surfaces. The thickness of the adsorbed peptide layer was estimated to be approximately 20 A. The peptide formed a tightly packed layer, which did not contain water. These studies provide information about the affinity of the amyloid beta-peptide to different substrates in aqueous solution and suggest that the amyloid fibril formation may be driven by interactions with surfaces.  相似文献   

15.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

16.
A theory has been developed for the adsorption of polyelectrolytes on charged interfaces from an aqueous salt solution. This adsorption is determined by the electrical charge density of the polyelectrolyte, the adsorption energy, the salt concentration, the molecular weight, solubility, flexibility, and concentration of polymer. The theory relates these parameters to the properties of the adsorbed polymer layer, i.e., the amount of polymer adsorbed, the fraction of the adsorbent interface covered, the fraction of the segments actually adsorbed on the interface versus the fraction of the segments in the dangling loops, the final surface charge density, and the thickness of the adsorbed layer. As polyelectrolyte adsorption should resemble nonionic polymer adsorption at high ionic strength of the solution or low charge density on the polymer, this work is an extension of the nonionic polymer adsorption theory to polyelectrolyte adsorption. The following effects are taken into account: (a) the conformational change upon adsorption of a coil in solution into a sequence of adsorbed trains interconnected by loops dangling in solution; (b) the interactions of the adsorbed trains with the interface and with each other; (c) the interaction of the dangling loops with the solvent; (d) the change in surface charge density of the adsorbent due to adsorption of charged trains and the accompanying changes in the electrical double layer which contains “small” ions as well as charged loops; (e) the (induced) dipole interaction of the adsorbed trains with the charged adsorbent interface. The theory is worked out for low potentials (Debye—Hückel approximation); in Appendix B an outline of a more complete treatment is given. The predicted adsorption isotherms have the experimentally observed high-affinity character. A relation between the adsorption energy, the surface charge density on the adsorbent, the degree of dissociation of the polymer, and the salt concentration predicts the conditions under which no adsorption will occur. For adsorbent and polymer carrying the same type of charge (both positive or both negative) the adsorption is predicted to decrease with increased charge density on polymer or adsorbent and to increase with salt concentration. If adsorbent and polymer carry different type charges, the adsorption as a function of the degree of dissociation, α, goes through a maximum at a relatively low value of α and, depending on the adsorption energy, an increase in the salt concentration can then increase or decrease the adsorption. At finite polymer concentration in solution the number of adsorbed segments and the fraction of the interface covered practically do not change with an increase in polymer concentration, whereas the total number of polymer molecules adsorbed increases slightly, as does the average fraction of segments in loops. The experimental results for polyelectrolyte adsorption have been reviewed in general and, as far as data are available, the predictions of the theory seem to follow the experimentally observed trends quite closely, except for the thickness of the adsorbed layer. This thickness is systematically overestimated by the theory and two reasons for this are given. The theoretical model implies a not too low ionic strength of the solution. Extrapolation of results to solutions of very low ionic strength is not warranted.  相似文献   

17.
The association between low-charge-density polyelectrolytes adsorbed onto negatively charged surfaces (mica and silica) and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated using surface force measurements, ellipsometry, and XPS. All three techniques show that the polyelectrolyte desorbs when the SDS concentration is high enough. The XPS study indicates that desorption starts at a SDS concentration of ca. 0.1 unit of cmc (8x10(-4) M) and that the desorption proceeds progressively as the SDS concentration is increased. Surface force measurements show that for the polyelectrolyte studied here, having 1% of the segments charged, the desorption proceeds without any swelling of the adsorbed layer. This behavior differs from that observed when polyelectrolytes of greater charge density are used. Copyright 2001 Academic Press.  相似文献   

18.
Mean-field theory is used to derive criteria for the adsorption of a weakly charged polyelectrolyte molecule from salt solution onto surfaces patterned with charge and topography. For flat surfaces patterned with periodic arrays of charged patches, the adsorbed layer thickness predicted using mean-field theory and that found by Brownian dynamics simulations are in quantitative agreement in the strong-adsorption regime, which corresponds to sufficiently small kappa or sufficiently large |sigma(eff)q|, where kappa is the inverse Debye screening length, sigma(eff) is an effective surface charge density, and q is the charge on each segment of the polyelectrolyte. Qualitative agreement is obtained in the weak-adsorption regime, and for the case where surfaces are patterned with both charge and topography. For uniformly charged, sinusoidally corrugated surfaces, the theory predicts that the critical temperature required for adsorption can be greater than or less than the corresponding value for a flat surface depending on the relative values of kappa and the corrugation wave number. If the surface charge is also allowed to vary sinusoidally, then adsorption is predicted to occur only when the topography crests have a surface charge opposite to that of the polyelectrolyte. Surfaces patterned with rectangular indentations having charged bottoms which are separated by flat charged plateaus are investigated as well. Adsorption is predicted to occur even when the net surface charge is zero, provided that the plateaus have a charge opposite to that of the polyelectrolyte. If the charge on the plateaus and polyelectrolyte is the same, adsorption may still occur if electrostatic attraction from the indentation bottoms is sufficiently strong.  相似文献   

19.
20.
We review the interaction of charged polymeric systems with proteins. In solutions of low ionic strength there are many examples of proteins attracted to polyelectrolytes even if both systems carry the same overall charge. This attractive interaction is widespread, having been observed for single polyelectrolyte chains as well as for polyelectrolytes grafted to surfaces (polyelectrolyte brushes) and charged polymeric networks. In all cases, adding salt weakens the interaction considerably. We discuss the suggestion that the attractive force at low salinity originates from the asymmetry of interaction between charged polymer segments and charged patches on the surface of the protein globule. This can be explained if the attractive force is mainly due to a counterion release force, i.e., the polyelectrolyte chains become the multivalent counterions for the patches of opposite charge localized on the surface of the proteins. We review a selection of simple models that lead to semi-quantitative estimates of this force as the function of salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号