首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

2.
Mononuclear oxorhenium(V) complexes [ReO(HL1 or H2L2)(PPh3)(OH2)Cl]Cl, {H2L1 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2 = 1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone)}, have been synthesized by ligand exchange with trans-trichloromonooxo-bis(triphenylphosphine) rhenium(V). The reaction of a 1?:?1 mixture of either NH4SCN, 1,10-phenanthroline (1,10-phen) or 8-hydroxyquinoline (8-OHquin) and H2L1 or H3L2, with trans-ReOCl3(PPh3)2 yielded the mononuclear oxorhenium(V) complexes, [ReO(HL1 or H2L2)(PPh3) (SCN)Cl], [ReO(HL1)(1,10-phen)Cl]Cl, [ReO(H2L2)(1,10-phen)(OH2)]Cl2·H2O and [ReO(HL1 or H2L2) (8-Oquin)Cl]. Thermal studies on these complexes showed structural transformations from mononuclear into binuclear complexes. [Re2O3(HL1 or H2L2)2(PPh3)2Cl2], [Re2O2(μ-L1 or L2)2(SCN)2] and [Re2O3 (H2L2)2(1,10-phen)2]Cl2, were synthesized pyrolytically in the solid state from the respective precursor rhenium complexes. The structures of all complexes and the corresponding thermal products were elucidated using elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments and 1H NMR and TG-DSC measurements. The prepared complexes and their thermal products have octahedral configurations. The ligands H2L1 or H3L2 behave as monoanionic bidentate or monoanionic tetradentate ligands towards the oxorhenium ions. The antifungal activities of the metal complexes towards Alternaria alternata and Aspergillus niger were tested and showed comparable behavior with well known antibiotics.  相似文献   

3.
Abstract

Schiff bases S-benzyl- and S-methyl-β-N-(2-hydroxyphenyl)methylene dithiocarbazate (H2L1 and H2L2, respectively) and S-benzyl- and S-methyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (HL3 and HL4, respectively) were prepared. Then organotin(IV) complexes [SnPh2(L1)] (1), [SnMe2(L1)] (2), [SnPh2(L2)] (3), [SnMe2(L2)] (4), [SnPh2Cl(L3)] (5), and [SnPh2Cl(L4)] (6) were obtained from the reaction of Schiff bases with SnR2Cl2 (R = Ph and Me). The synthesized complexes have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopy. Spectroscopic studies show that, in complexes 1–4, the Schiff base acts as a tridentate dianionic ligand and coordinates through the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is five. In complexes 5 and 6, the ligand is monoanionic and unidentate, and coordinated only via the thiol group, and the azomethine nitrogen is not involved in coordination to tin. Therefore the coordination number of tin is four.

GRAPHICAL ABSTRACT   相似文献   

4.
Reactions of Ni(NO3)2 · 6H2O) in EtOH(iso-PrOH) with optically active bis(menthane) ethylene-diaminodioxime (H2L1), pinano-para-menthane ethylenediaminodioxime (H2L2), pinano-para-menthane propylenediaminodioxime (H2L3) and bis(pinane) propylenediaminodioxime (H2L4) were used to synthesize [Ni(H2L1)NO3[NO3 · 2H2O (I), [Ni(HL2)]NO3 (II), [Ni(HL3)]NO3 (III), and [Ni(HL4)]NO3 (IV). X-ray diffraction study of paramagnetic complex Ieff = 3.04 μB and diamagnetic complexes II and III revealed their ionic structures. A distorted octahedral polyhedron N4O2 in the cation of complex I is formed by the N atoms of tetradentate cycle-forming ligand, i.e., the H2L1 molecule, and the O atoms of the NO 3 ? anion acting as a bidentate cyclic ligand. In the cations of complexes II and III, containing a pinane fragment, the coordination core NiN4 has the shape of a distorted square formed on coordination of tetradentate cycle-forming ligands, i.e., anions of the starting dioximes. The structure of diamagnetic complex IV is likely to be similar to the structures of complexes II and III.  相似文献   

5.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

6.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

7.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

8.
Nickel(II) complexes with 6-benzylaminopurine (BAP) derivatives, namely 6-(3-chlorobenzylamino)purine (HL1), 6-(4-chlorobenzylamino)purine (HL2) and 6-(4-fluorobenzylamino)purine (HL3), have been prepared and characterized by elemental analyses, i.r., u.v.–v.i.s., ES+ and FAB+ mass spectroscopy, magnetic susceptibility and conductivity measurements, and by thermal analysis. The complexes are: [Ni(L1(H2O)2Cl] · H2O, [Ni(L1)(H2O)-(NO3)] · H2O, [Ni(L2)(H2O)2Cl], [Ni(L2)(H2O)2(NO3)] · H2O, [Ni(HL2)(H2O)Cl2] · EtOH and [Ni(L3)(H2O)2Cl]. They have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines.  相似文献   

9.
The coordination polymers [Cd2(bbmb)2(L1)(HL1)0.5(H2O)]n ( 1 ), [Cd2(bbmb)2(L2)2(H2O) · (H2O)]n ( 2 ), and [Ni(bbmb)2(L3)]n ( 3 ), were synthesized by the hydrothermal reaction of 4,4′‐bis(benzimidazol‐1‐ylmethyl)biphenyl (bbmb) with CdII/NiII ions in the presence of three flexible aliphatic acids [tricarballylic acid (H3L1), succinate (H2L2), and adipate (H2L3)]. Complexes 1 – 3 were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal and X‐ray powder diffraction analyses. Complex 1 presents a 3D 3‐nodal (3,4,4)‐connected net with 3 , 4 , 4T78 topology, 2 exhibits a 3D network with 66‐ dia topology, whereas 3 is a chain structure and further extended by hydrogen bonding interactions to form a 2D supramolecular network. Structural diversity of these complexes indicates that these frameworks could be tuned by the conformation of bbmb ligand and the different coordination modes of the aliphatic carboxylate co‐ligands. The thermal and fluorescence properties, the catalytic activities of complexes 1 – 3 in a Fenton‐like process were investigated.  相似文献   

10.
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.  相似文献   

11.
Schiff bases o-vanilidene-1-aminobenzene (HL1) and o-vanilidene-2-methyl-1-aminobenzene (HL2) lead to the formation of mono- and bis-[(Cl)Zn(L1)] (1), [(Cl)Zn(L2)] (2), [(Cl)Hg(L1)] (3), [(Cl)Hg(L2)] (4), [Zn(L1)2] (5), [Zn(L2)2] (6), [Hg(L1)2] (7), and [Hg(L2)2] (8) complexes by reactions of zinc(II) and mercury(II) chlorides in different mole ratio(s). Complexes 18 have been characterized by elemental analyses (Zn, Hg, C, H, Cl, and N), melting point and spectral (IR, 1H-NMR), PXRD, molar conductivity measurement, and TGA. Conductivity measurements suggest non-electrolytes. Structural compositions have been assigned by mass spectral studies. Four-coordinate geometry may be assigned to these complexes tentatively. Structural study reveals that in 14 two metal centers are held together by two bridged (μ2-Cl) chlorides, whereas 58 contain two bidentate Schiff-base ligands around one metal-producing monomers.  相似文献   

12.
Three new coordination complexes, 2{[Co(L1)2]ClO4} · 0.5CH3OH (1), [Mn(L2)2] (2), and [Cu(HL2)(L2)]ClO4 · 2H2O (3) have been synthesized from two tridentate N,N,O-donor hydrazone ligands HL1, 2-acetylpyridine-salicyloylhydrazone, and HL2, 2-benzoylpyridine-salicyloylhydrazone, respectively and thoroughly characterized by elemental analysis, FT-IR, UV–Vis, electrochemical, and room temperature magnetic susceptibility measurements. Structures of the complexes have been unequivocally established by single crystal X-ray diffraction technique. Structural analysis reveals that 1 consists of two chemically similar but crystallographically independent cationic [Co(L1)2]+ units and 2 consists of a neutral [Mn(L2)2] molecule while 3 consists of a cationic [Cu(HL2)(L2)]+ unit. Metal ions display distorted octahedral geometry in 1 and 2 while in 3 it shows a distorted square pyramidal geometry. Ligand conformations around the metal ions are stabilized by the presence of intra-ligand hydrogen bonding in all the complexes. Structure of 3 reveals that a perchlorate ion linked to the complex by hydrogen bonding via a water molecule.  相似文献   

13.
We report the synthesis and the characterization (elemental analysis, FT-IR spectroscopy, thermal methods and molar conductivity measurements) of the mixed complexes of zinc with acetate and 3-amino-5-methylpyrazole, HL 1, [Zn(OAc)2(HL1)2], or 3-amino-5-phenylpyrazole, HL 2 [Zn(OAc)2(HL2)2], or 4-acetyl-3-amino-5-methylpyrazole, HL 3, [Zn(OAc)(L3)(HL3)]2, with isothiocyanate and HL 2 [Zn(SCN)2(HL2)2], or HL 3 [Zn(SCN)2(HL3)2], and with nitrate, isothiocyanate and 3,5-dimethyl-1-carboxamidinepyrazole, HL 4 [Zn(NO3)(NCS)(HL4)2]. The thermal decomposition of the complexes is generally continuous resulting zinc oxide as end product,except [Zn(OAc)(L3)(HL3)]2 in which case a well-defined intermediate was observed between 570–620 K. On the basis of the IR spectra and elemental analysis data of the intermediate a decomposition scheme is proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
New complexes of type [Cu(L1)2(OH2)]·4H2O (1), [Cu(L2)(OH2)]·0.5H2O (2) and [Cu3(L3)2(OH2)3]·0.5H2O (3) were synthesized by [1 + 1], [1 + 2] and [1 + 3], respectively, template condensation of 2,4,6-triamino-1,3,5-triazine and salicylic aldehyde in the presence of copper(II). The features of complexes have been established from microanalytical, IR and UV–Vis data. The thermal analyses have evidenced the thermal intervals of stability and also the accompanying thermodynamic effects. Processes as water elimination and oxidative degradation of the organic ligands were observed. After water elimination, complexes revealed a similar thermal behaviour. The final product of decomposition was copper(II) oxide as powder X-ray diffraction indicated.  相似文献   

15.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

16.
Silver(I) complexes of heterobidentate ligands that incorporate one or two N-heterocyclic carbene moieties coupled with an alcohol or amine group have been made by direct deprotonation of ligands of the form [HOCR1R2CH2(1-HC{NCHCHNR})][X], H2L1X (X = Br, I), [H2NR1CHR2CHR2(1-HC{NCHCHNR})][Br]2 H3L2X2 (X = Cl, Br), and [H2N{CH2CH2(1-HC[NCHCHNMes])}2][X]3 H4L3X3 (X = Cl, Br). Silver(I) oxide is sufficiently basic to deprotonate both the imidazolium and the alcohol functional groups of all but one of the L1 ligand precursors, to afford rare examples of silver alkoxide complexes [Ag(L1)], stabilised by the soft donor carbene. Another complex of L1 is characterised as the carbene alcohol adduct [Ag(HL1)2I]. The analogous reactions of silver(I) oxide with the amino imidazolium precursors afford silver amino-carbenes [Ag(HL2)Br] with the potentially bidentate L2 ligand, and [Ag(HL3)X] (X = Cl, Br) with the potentially tridentate L3 ligand. A single crystal X-ray diffraction study of the latter complex confirms that the neutral amine of the potentially tridentate L3 ligand is unco-ordinated; instead the structure contains discrete chains of T-shaped silver bis(carbene) halide moieties that bridge to form a zig-zag 2-connected polymer. Protonolysis of two of the silver alkoxide and amino adducts, [Ag(L1a)] and [Ag(HL2a)Br], affords imidazolium complexes salts [H2L1a][AgCl2] and [Ag(H2L2a)Br][AgBr2] that retain the Ag(I) centre as complex counterions. The single crystal X-ray structures of these salts have been determined and show the silver(I) cations are now incorporated into ladders or chains as silver(I) halo-anions, and a silver amine dative bond is present in the latter complex.  相似文献   

17.
《Polyhedron》2001,20(9-10):1029-1035
The reaction of 3-phenyl-5-(2-pyridyl)pyrazole (HL0) and 3-phenyl-5-(6-methyl-(2-pyridyl))pyrazole (HL1) with nickel(II) salts produces mononuclear coordination compounds. The new complexes have been characterised by elemental analyses, conductivity measurements and infrared and electronic spectroscopies.Two different forms of mononuclear nickel(II) complexes have been prepared and structurally characterised by X-ray crystallography: [Ni(HL0)2Cl(H2O)][Ni(HL0)2(H2O)2]Cl3·CH3OH·H2O and [Ni(HL1)2(H2O)2]Br2·2.5DMF. In the cationic complexes, the coordination of the Ni(II) is octahedral with two bidentate HL0 or HL1 neutral ligands in a cis disposition. The degree of distortion from regular octahedral geometry is compared to closely related structures. In the solid state, cations and anions are bonded by hydrogen bonding.  相似文献   

18.
New series of half-sandwich ruthenium(II) complexes supported by a group of bidentate pyridylpyrazole and pyridylimidazole ligands [(η6-C6H6)Ru(L2)Cl][PF6] (1), [(η6-C6H6)Ru(HL3)Cl][PF6] (2), [(η6-C6H6)Ru(L4)Cl][PF6] (3), and [(η6-C6H6)Ru(HL5)Cl][PF6] (4) [L2, 2-[3-(4-chlorophenyl)pyrazol-1-ylmethyl]pyridine; HL3, 3-(2-pyridyl)pyrazole; L4, 1-benzyl-[3-(2′-pyridyl)]pyrazole; HL5, 2-(1-imidazol-2-yl)pyridine] are reported. The molecular structures of 1-4 both in the solid state by X-ray crystallography and in solution using 1H NMR spectroscopy have been elucidated. Further, the crystal packing in the complexes is stabilized by C-H?X (X = Cl and π), N-H?Cl, and π-π interactions.  相似文献   

19.
Novel optical ligands bis(menthane) (H2L1), pinano-para-menthane (H2L2), and carano-para-menthane (H2L3) propylenediaminodioximes are obtained. Diamagentic Co(III) complexes of the composition Co(HL1)Cl2 (I), Co(HL2)Cl2 (II), Co(HL3)Cl2 (III), and Co(HL4)Cl2 · H2O(IV) are synthesized by reactions of CoCl2 with H2L1, H2L2, H2L3 and bis(carane) propylenediaminodioxime (H2L4) in ethanol in air. The crystal and molecular structures of compound I is determined by X-ray diffraction analysis. The crystals are monoclinic with the unit cell parameters a = 7.8385(3) Å, b = 11.4074(6) Å, c = 14.9509(6) Å, β = 104.278(2)°, V = 1295.57(10) Å3, Z = 2, ρ(calcd) = 1.367 g/cm3, F(000) = 564, M = 533.41, space group P21. The crystal structure of complex I consists of individual mononuclear molecules. The Co3+ ion coordinates four N atoms of tetradentate cycle-forming anionic ligand and two Cl atoms. The coordination polyhedron of Cl2N4 is a distorted octahedron. The 13C and 1H NMR spectra of the complexes synthesized confirm coordination of four N atoms of a ligand.  相似文献   

20.
Reactions of PdCl2, LiCl, indole-3-carboxaldehyde 4-R-benzoylhydrazones (H2Ln; n = 1, 2, 3 and 4 for R = H, Cl, OMe and NMe2, respectively) and CH3COONa·3H2O in 1:2:1:1 mol ratio in methanol produce the cyclopalladated species of general formula [Pd(HLn)Cl] in 65-85% yields. The complexes have been characterized with the help of elemental analysis and spectroscopic (infrared, electronic and NMR) measurements. The proton NMR spectra of the complexes suggest palladation at the peri position of the indole moiety in (HLn). Molecular structure of a representative complex determined by X-ray crystallography confirms the peri-palladation and formation of a distorted CNOCl square-plane around the metal centre by the tridentate (HLn) and the chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号