首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New thermoplastic polyurethaneureas (TPUU) based on polyisobutylene (PIB) and poly(tetramethylene oxide) (PTMO) segments have been synthesized possessing tensile properties comparable to conventional PTMO based TPUs. PIB based TPUU containing 35 weight (wt)% hard segment was synthesized by chain extension of H2N-Allyl-PIB-Allyl-NH2 with 4,4′ -methylene bis(phenylisocyanate) (MDI) and 1,4-butanediol (BDO) in toluene. The ultimate tensile strength (UTS) = 12 MPa and ultimate elongation = 70% were inferior to PTMO based polyurethane (UTS = 35 MPa, elongation at break = 600%). H2N-Allyl-PIB-Allyl-NH2 and HO-PTMO-OH in different proportions were chain extended in presence of MDI and BDO to obtain TPUUs containing 35 wt% hard segment. The polymers exhibited M ns = 84000–138000 with polydispersity indices (PDIs) = 1.7–3.7. The UTS = 23–32 MPa and elongation at break = 250–675% was comparable to that of PTMO based polyurethane and significantly higher than the PIB based TPUU with the same Shore hardness. The Young's modulus of the polymers was strongly dependent and directly proportional to the PIB wt% in the SS of the TPUUs.  相似文献   

2.
氨基硅油扩链改性水性聚氨酯的研究   总被引:36,自引:2,他引:34  
通过将由甲苯二异氰酸酯与聚四氢呋喃,二羟甲基丙酸反应制得的聚氨酯预聚体在低浓度氨基硅油的水乳液中扩链,合成了一种硅氧烷改性的聚氨酯水乳液,并用傅立叶红外光谱,ESCA能谱,接触角仪,电子拉力试验机,吸水率测定及乳液稳定性测试对其进行研究。  相似文献   

3.
Preparation of two model polymers of polynucleotides with linear polyurethane backbone and 2-(thymin-1-yl)propionyl or 2-(uracil-1-yl)propionyl group as grafted pendant are described. 2-(Thymin-1-yl)propionic acid (TPA) and 2-(uracil-1-yl)propionic acid (UPA) were grafted into partial imino functionalized polyurethane, poly[(β,β′-diethylene)amine methylene bis(4-phenylcarbamate)]-75 (PU-NH-75), at the secondary amino group through amide bonds with 1-hydroxybenzotriazole (HOBT) using the active ester technique. Two novel polymer models of polynucleotides, poly[(N-(2-(thymin-1-yl)propionyl)-β,β′-diethylene)amine methylene bis(4-phenylcarbamate)]-75 (PU-NT-75) and poly[(N-(2-(uracil-1-yl)propionyl)-β,β′-diethylene)amine methylene bis(4-phenylcarbamate)]-75 (PU-NU-75) were obtained. The imino polyurethane PU-NH-75 was produced from the partially deprotected N-Cbz imino polyurethane, poly[N-(benzyloxycarbonyl-β,β′-diethylene)amine methylene bis(4-phenylcarbamate)] (PU-NCbz) which was prepared by the polyaddition of 4,4′-diphenylmethane diisocyanate (MDI) with diol monomer N-benzyloxycarbonyl-β,β′-dihydroxyethylamine (CbzHEA). Selective N-protection of N-benzyloxycarbonyloxy-5-norbornene-2,3-bicarboximide (CbzONB) with β,β′-dihydroxyethylamine (HEA) gave the N-Cbz protected diol monomer HEA. The related monomer model compounds were also prepared by the same methods.  相似文献   

4.
A new approach to obtain imide‐containing elastic polymers (IEPs) via elastic and high‐molecular‐weight polyureas, which were prepared from α‐(4‐aminobenzoyl)‐ω‐[(4‐aminobenzoyl)oxy]‐poly(oxytetramethylene) and the conventional diisocyanates such as tolylene‐2,4‐diisocyanate(2,4‐TDI), tolylene‐2,6‐diisocyanate(2,6‐TDI), and 4,4′‐diphenylmethanediisocyanate (MDI), was investigated. IEP solutions were prepared in high yield by the reaction of the polyureas with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone (NMP) at 165°C for 3.7–5.2 h. IEPs were obtained by the thermal treatment at 200°C for 4 h in vacuo after NMP was evaporated from the resulting IEP solutions. We assumed a mechanism of the reaction via N‐acylurea from the identification of imide linkage and amid acid group in IEP solutions. NMR and FTIR analyses confirmed that IEPs were segmented polymers composed of imide hard segment and poly(tetramethylene oxide) (PTMO) soft segment. The dynamic mechanical and thermal analyses indicated that the IEPs prepared from 2,6‐TDI and MDI showed a glass‐transition temperature (Tg ) at about −60°C, corresponding to Tg of PTMO segment, and suggested that microphase‐separation between the imide segment and the PTMO segment occured in them. TGA studies indicated the 10% weight‐loss temperatures (T10) under air for IEPs were in the temperature range of 343–374°C. IEPs prepared from 2,6‐TDI and MDI showed excellent tensile properties and good solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 715–723, 2000  相似文献   

5.
A new route to polyurethanes containing nucleic acid base derivatives as grafted pendants have been established. The method is based on the grafting of 2-(thymin-1-yl)propionic acid (TPA) or 2-(adenin-9-yl)propionic acid (APA) onto amino functionalized polyurethane, poly[2-amino-2-methyl-1,3-propylene methylene bis(4-phenyl carbamate)] (PU-NH2, IX ) at the primary amino group by the N-hydroxy compound of active ester technique. Two novel polymer models of polynucleic acid—poly[2-(2′-(thymin-1′-yl) propionamido)-2-methyl-1,3-propylene methylene bis(4-phenylcarbamate)] (PU–NHT, X ) and poly[2-(2′-(adenin-9′-yl)propionamido)-2-methyl-1,3-propylene methylene bis(4-phenylcarbamate)] (PU–NHA-40, XI )—were obtained. The amino functional polyurethane was prepared by the following three step reactions; (1) Selective N-protection of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarbonimide (CbzONB) with 2-amino-2-methyl-1,3-propanediol gave the N-protecting diol monomer 2-benzyloxycarbonylamino-2-methyl-1,3-propanediol (CbzAMP); (2) N-Protecting polurethane poly(2-benzyloxycarbonylamino-2-methyl-methyl-1,3) propylene methylene bis(4-phenylcarbamate) (PU–NHCbz, VIII ) was obtained by the polyaddition of 4,4′-diphenyl-methane diisocyanate (MDI) with CbzAMP. (3) Deprotection of PU–NHCbz produced amino polyurethane PU-NH2. Prior to polymer synthesis, the amidation of APA with 3-aminoheptane or diethylamine were carried out as a model reaction study and the related monomer model compounds were prepared by the same methods.  相似文献   

6.
A relatively high-molecular-weight polyurethane based on MDI and ethylene glycol was prepared and characterized. This polymer was metalated with sodium hydride in N,N-dimethylformamide (DMF) at about 0°C. Metalation was confirmed principally by spectroscopic identification of the N-methyl derivative obtained by coupling the metalated polymer with methyl iodide. Under appropriate reaction conditions the metalated polyurethane was used for the anionic graft polymerization of the reactive monomers acrylonitrile and ethylene and propylene sulfides. Attempted anionic graft polymerizations with other monomers, including styrene and ethylene and propylene oxides, were unsuccessful. The polyurethane grafted with acrylonitrile was separated by fractionation from accompanying small amounts of polyacrylonitrile, a low-molecular-weight homopolymer. One sample of polyurethane grafted with acrylonitrile was identified by microanalysis, IR, NMR, and increase in weight and was also characterized by differential thermal analysis.  相似文献   

7.
A_2和B_3型单体缩聚合成超支化偶氮聚氨酯研究   总被引:5,自引:0,他引:5  
通过双官能度异氰酸酯基单体MDI(A2)与三官能度羟基偶氮单体(B3)的缩聚反应,得到了超支化偶氮聚氨酯,利用核磁共振、热分析、紫外-可见光谱、红外光谱、GPC等方法对其结构和性能等进行了详细表征.该聚合物在干涉的p偏振Ar+激光照射下,可得到周期性规则的正弦波形表面起伏光栅.  相似文献   

8.
Polyurethanes containing poly(2-trifluoroethoxymethyl-2-methyl)-co-(2-bromomethyl-2-methyl)-1,3-propylene oxide (co-polyoxetane) soft blocks, P[3FOx:BrOx-m:n], were prepared and used (0.5-2 wt %) to modify the surface properties of a conventional polyurethane. The substrate polyurethane was composed of an isophorone diisocyanate/butanediol hard block and a polytetramethylene oxide soft block [IPDI/BD(50%)-PTMO(2000)]. A combination of tapping mode atomic force microscopy (TM-AFM), X-ray photoelectron spectroscopy (XPS), and dynamic contact angle (DCA) studies showed that the fluorous polyurethane surface modifiers confer surface properties similar to those of the parent at 0.5-1.0 wt %. The retention of initial wetting behavior in water was enhanced with higher ratios of 3FOx:BrOx that corresponds to increasing fluorous character. A semifluorinated chaperone is necessary to surface concentrate -CH2Br groups. Negligible Br was detected by XPS when the P[BrOx]-soft block polyurethane was used as a surface modifier (0.5%) and the wetting behavior was similar to that of the bulk polyurethane. Despite being hydrophobic (theta adv = 102 degrees) the P[BrOx]-soft block polyurethane is not a polymer surface modifier under the conditions described herein. The calculated solubility parameters for PTMO and P[BrOx], which are similar, support the notion of BrOx miscibility with the base polyurethane. The combination of miscibility of BrOx repeat units and lack of an end-group-like architecture minimizes BrOx surface concentration in the chosen bulk polyurethane.  相似文献   

9.
Water‐based polyurethane–urea (WPUU) nanoparticles containing 4,4′‐methylenedi‐p‐phenyl diisocyanate (MDI) and isophorone diisocyanate (IPDI) were synthesized by a stepwise prepolymer mixing process, that is, the consecutive formation of hydroxyl‐terminated and isocyanate‐terminated polyurethane prepolymers. The reaction behavior, chemical structure, and consequent morphology of the polyurethane prepolymers and WPUU were investigated with Fourier transform infrared (FTIR), gel permeation chromatography, and NMR techniques with MDI concentrations ranging from 0 (pure IPDI) to 50% with respect to the total moles of isocyanate. Wide‐angle X‐ray diffraction and differential scanning calorimetry patterns showed that the crystallinity of WPUU, which mostly originated from crystallizable poly(tetramethylene adipate) polyol, was significantly affected by the MDI content. Both the crystallinity and melting temperature of WPUU decreased as the MDI content increased. Deconvoluted relative peak areas of the carbonyl region in the FTIR spectrum revealed that the effect of hydrogen bonding among the hard segments became favorable as the MDI content increased, whereas the hydrogen bonding of the soft segments significantly decreased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4353–4369, 2004  相似文献   

10.
The effect of varying sample preparation parameters on the thermal behavior and on the small-angle x-ray scattering (SAXS) properties of a polyether polyurethane were investigated. The polyurethane studied was a methylene bis(p-phenyl isocyanate) (MDI)/butanediol/poly(tetramethylene oxide) (PTMO) system synthesized in a 6/5/1 mole ratio by a two-step solution polymerization. The PTMO had a nominal molecular weight of 2000. The samples were compression molded under different conditions for the SAXS experiments. The preparation parameters studied included molding time and temperature, sample thickness, and quenching rate from the molding temperature. The molding temperature has the greatest effect on the SAXS data. In this case the domain size was observed to increase as the molding temperature increased from 130 to 200°C. The thermal properties were also found to be strongly dependent on the molding temperature, as measured by differential scanning calorimetry (DSC). An endotherm related to the annealing that occurs during the molding process appears in each sample near the molding temperature. The other preparation parameters have little or no effect on the SAXS and thermal properties of this sample.  相似文献   

11.
Morphology and tensile properties of model thermoplastic polyurethanes (TPUs) containing polyisobutylene (PIB) or poly(tetramethylene oxide) (PTMO) based soft segment and 4,4‐methylene bis(phenyl isocyanate) (MDI) and 1,4‐butanediol (BDO) based monodisperse hard segments (HSs), consisting of exactly two to four MDI units extended by BDO, were investigated. Using FT‐IR spectroscopy, increased hydrogen bonded C?O fraction was observed in model TPUs as the HS size increased. The hydrogen bonded C?O fraction was higher in PIB based TPUs compared with PTMO based TPUs, indicating higher phase separation in PIB based TPUs. The morphology of TPUs was investigated using AFM phase imaging, which showed ribbon‐like or interconnected hard domains in PTMO based model TPUs and randomly dispersed hard domains in PIB based model TPUs. SAXS revealed that the degree of phase separation in the model TPUs was higher than in their polydisperse analogues. Domain spacing as well as interfacial thickness increased with the increasing HS size, and both values were higher in PTMO based TPUs. The tensile analysis indicated that model TPUs exhibited higher modulus and slightly higher elongation compared with their polydisperse analogues. Only in PTMO based model TPUs, strain induced crystallization was observed above 300% elongation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2485–2493  相似文献   

12.
液晶型聚氨酯弹性体的固体高分辨核磁共振研究   总被引:1,自引:0,他引:1  
采用固体高分辨^13C核磁共振谱以及溶液碳谱、氢谱的方法对以聚四氢呋喃(PTMO)为软段、4,4'-二苯基甲烷二异氰酸酯(MDI)为硬段、4,4'-二羟已氧基联苯(HB6)为扩链剂的液晶型聚氨酯弹性体的相态结构、分子运动、氢键相互作用等问题进行了研究。探讨了样品的化学结构与上述问题间的关系。  相似文献   

13.
A novel synthesis of poly(ethylene glycol) (PEG)-grafted poly(urethanes) (PURs) is described based on a precursor PUR containing free amino groups in the main chain. Three different poly(urethane) backbones were prepared: a homopoly(urethane) comprised of N-Bocdiethanolamine (BDA) and 4,4′-methylenebis(phenyl isocyanate) (MDI), a copoly(urethane) (COPUR) consisting of BDA, N-benzyldiethanolamine and MDI, and a poly(urethane urea) (PUU) that was prepared from BDA, MDI, and ethylenediamine as the chain extender. The Mn of these poly(urethanes) ranged from 32,000 to 72,000 g/mol. PEG (750, 1,900, and 5,000 g/mol) was grafted onto the boc-deprotected poly(urethanes) via the chloroformate. Films of the polymers were spin cast from dilute solutions, annealed, and the surfaces analyzed by goniometry. Water contact angle data indicates increasing PEG surface coverage of the poly(urethanes) with increasing PEG molecular weight. Reorientation of the polymer films is evidenced by contact angle hysteresis. Polymer thrombogenicity, which was studied using blood perfusion experiments, shows that COPUR-g-PEG5000 and PUU-g-PEG5000 exhibit very little platelet adhesion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3441–3448, 1999  相似文献   

14.
Imprinted polymers were synthesized using the surface‐grafting technique with [Co(III) 1 (vpy)(dmap)]PF6 { 1 , bis[2‐hydroxy‐4‐(4‐vinylbenzyloxy)benzaldehyde]ethylene‐diimine; vpy: 4‐vinylpyridine; dmap: N,N′‐dimethyl‐4‐aminopyridine} as the template. The metallated sites were probed using spectroscopic techniques including UV–vis, Fourier transform infrared, and electron paramagnetic resonance (EPR) spectroscopies to investigate the site architecture and isolation of the immobilized sites in the surface‐grafted polymers. EPR studies showed a distribution of four and five coordinated sites similar to the bulk copolymers, and the surface‐grafted polymer showed reversible binding to dioxygen in multiple cycles. Both results indicated site isolation in the surface‐grafted polymers analogous to the bulk polymers. Although the dioxygen binding in surface‐grafted polymers is reversible, the spin density decreases to 50% in the third cycle as opposed to bulk copolymers. This indicates that the sites are more heterogeneous and more exposed to the environment than the analogous sites in bulk copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 888–897, 2001  相似文献   

15.
New thermoresponsive polymers based on poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues were designed with increased hydrophobic content to facilitate temperature‐dependent chromatographic separations of peptides and proteins from aqueous mobile phases. These polymer solution exhibited a lower critical solution temperature (LCST) when the alkyl group is methyl, ethyl, isopropyl, propyl, butyl, and isobutyl. However, larger alkyl groups such as hexyl and phenyl were not soluble in aqueous solutions at any temperature. Phase transition temperatures were lower for larger alkyl groups and increased with decreasing polymer molecular weight and concentration in solution. LCST dependence on polymer molecular weight and concentration is more significant compared with well‐studied poly(N‐isopropylacrylamide) (PIPAAm). Partition coefficient (log P) values for N‐(N′‐butylcarbamide)propylmethacrylamide and N‐(N′‐isobutylcarbamide)propyl methacrylamide (iBuCPMA) monomers are larger than that for IPAAm monomer, suggesting higher hydrophobicity than IPAAm. Chromatographic evaluation of poly(N‐(N′‐isobutylcarbamide)propyl methacrylamide) (PiBuCPMA) grafted silica particles in aqueous separations revealed larger k′ values for peptides, insulin, insulin chain B, and angiotensin I than PIPAAm‐grafted silica beads. In particular, k′ values for insulin obtained from PiBuCPMA‐grafted silica separations were much larger than those from PIPAAm‐grafted surface separations, indicating that PiBuCPMA should be more hydrophobic than PIPAAm. These results support the introduction of alkylcarbamido groups to efficiently increase thermoresponsive polymer hydrophobicity of poly(N‐alkylacrylamides) and poly(N‐alkylmethacrylamides). Consequently, poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues such as PiBuCPMA and poly(N‐(N′‐alkylcarbamido)alkylmehacrylamide) are new thermoresponsive polymers with appropriate hydrophobic partitioning properties for protein and peptide separations in aqueous media, depending on selection of their alkyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5471–5482, 2008  相似文献   

16.
A series of polyurea urethane block polymers based on either aminopropyl-terminated polycyanoethylmethylsiloxane (PCEMS) soft segments or soft segment blends of PCEMS and polytetramethylene oxide (PTMO) were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) chain-extended with 1,4-butanediol. The hard segment content varied from 11 to 36%, whereas the PTMO weight fraction in the soft segment blends varied from 0.1 to 0.9. The cyanoethyl side group concentration was also varied during the synthesis of the PCEMS oligomer. The morphology and properties of these polymers were studied by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical and tensile testing, and small-angle x-ray scattering. These materials exhibited microphase separation of the hard and soft segments; however, attaching polar cyanoethyl side groups along the apolar siloxane chains promoted phase mixing in comparison with polydimethylsiloxane-based polyurethanes. The increased phase mixing is postulated to lead to improved interfacial adhesion and thus can account for the observed improvement in ultimate tensile properties compared with polydimethylsiloxane-based polyurethanes. Both hard segment content and cyanoethyl concentration are important factors governing the morphological and tensile properties of these polymers.  相似文献   

17.
Abstract

A novel zwitterionic surfactant monomer containing a carboxybetaine moiety and a 10 carbon aliphatic tail was synthesized and copolymerized with acrylamide to yield a water‐soluble, hydrophobically modified zwitterionic polymer [Poly(acrylamide‐co‐(3‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl)aza‐tridecyl) ammonio butanoate))]. The response of aqueous polymer solutions to the addition of various classes of surfactant was investigated and compared to that of an analogous novel polymer containing the sulfobetaine zwitterion [Poly(acrylamide‐co‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl) aza‐tridecyl) ammonio propane sulfonate))]. It was found that the addition of sodium dodecyl sulfate (SDS) produced a pronounced maximum in viscosity, while dodecyltrimethylammoniumbromide (DTAB), N‐dodecyl‐N,N‐dimethylammonio‐1‐propanesulfonate (SB3‐12), and Triton X‐100 either had no effect, or produced a decrease in viscosity. The effect of pH on polymer–SDS interaction was also studied. Lowering pH increased the SDS–polymer interaction and significantly shifted viscosity enhancement to a higher SDS concentration.  相似文献   

18.
端羟基芳香酯二醇扩链的聚氨酯-酯的DSC研究陈静,余学海,杨昌正(南京化工学院应化系南京210009)(南京大学化学系南京210093)关键词嵌段聚醚聚氨酯-酯,结晶性,微观相结构,差示扫描量热法,形态结构众所周知,聚氨酯嵌段共聚物是一类结构特殊、用...  相似文献   

19.
端羟基芳香酯二醇扩链的聚氨酯-酯的DSC研究陈静,余学海,杨昌正(南京化工学院应化系南京210009)(南京大学化学系南京210093)关键词嵌段聚醚聚氨酯-酯,结晶性,微观相结构,差示扫描量热法,形态结构众所周知,聚氨酯嵌段共聚物是一类结构特殊、用...  相似文献   

20.
The core and valence energy levels of a series of poly(alkyl methacrylates) have been studied by ESCA. Surface compositions have been determined both from a comparison of area ratios for the O1s and C1s core levels and from the relative areas for the individual component peaks for these levels. The evidence presented suggests that on the ESCA depth-profiling scale the technique statistically samples the repeat unit with little or no evidence for preferential orientation of the alkyl side chain at the surface. Little evidence was found for either surface oxidation or hydrocarbon contamination at the surface of the samples studied. The valence energy levels are shown to be characteristic of the polymer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号